首页> 外文OA文献 >Flight Data Analyses of Fiber Optic Based Airworthy Structural Health Monitoring System for UAV using Artificial Neural Networks
【2h】

Flight Data Analyses of Fiber Optic Based Airworthy Structural Health Monitoring System for UAV using Artificial Neural Networks

机译:基于人工神经网络的无人机光纤适航结构健康监测系统飞行数据分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an airworthy, Fiber Bragg Gratings (FBG) based, Structural Health monitoring System (SHM) system for an Unmanned Aerial Vehicles (UAV). Various design issues pertaining to sensors location, embedment, integration of interrogation system instrumentation, online data recording, implementation of mathematical models for load estimations and GUI based flight data processing software are addressed. FBG data were processed to identify both vibration modes and loads using signal processing techniques and artificial neural network (ANN) algorithms respectively. The issue of sensor malfunctioning is also addressed wherein sensor failure was incorporated in the in-flight data during post processing for various flight regimes. The ANN based methodology was designed for identification of sensor failure and prediction of the estimated strain based on the available values from working (non-failed) sensors. The performance of load estimation was also compared in both the scenario (i.e. in the event of sensor failure and without sensor failure).
机译:本文介绍了一种适用于无人飞行器(UAV)的适航,基于光纤光栅(FBG)的结构健康监测系统(SHM)系统。解决了与传感器位置,嵌入,询问系统仪器集成,在线数据记录,用于负荷估算的数学模型的实现以及基于GUI的飞行数据处理软件有关的各种设计问题。分别使用信号处理技术和人工神经网络(ANN)算法对FBG数据进行处理,以识别振动模式和载荷。还解决了传感器故障的问题,其中在针对各种飞行状态的后处理期间,传感器故障被合并到飞行数据中。基于ANN的方法旨在根据工作(未失效)传感器的可用值来识别传感器故障并预测估计的应变。还在两种情况下(即在传感器出现故障和没有传感器出现故障的情况下)都比较了负载估算的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号