首页> 外文OA文献 >Validation of FCOM profiles for aircraft engine flight data using neural networks
【2h】

Validation of FCOM profiles for aircraft engine flight data using neural networks

机译:使用神经网络验证飞机发动机飞行数据的FCOM配置文件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper explores the application of artificial neural network approach for aircraft engine health monitoring. The Digital Flight Data Recorder (DFDR) has volumes of data which if mined appropriately can provide valuable information about the aircraft health. The Flight Crew Operating Manual (FCOM) lays down operational profiles, which are recommended to be followed for efficient fuel usage and for minimizing maintenance effort. In the proposed system, the information from FCOM profiles and ‘known’ flight data has been fused to train a back propagation feed-forward neural network. The predictions made by the neural network regarding the expected data of required engine parameters have been used to monitor the flight data and diagnose the health of the aircraft engine in relevance to the FCOM profiles. A Matlab GUI has been developed to simulate the ‘unknown’ flight data through a Simulink model for the neural network. Data from the A320 family of aircrafts has been used for training and simulating the model and preliminary results are detailed in the paper. The simulation results exhibit that the data used is fairly healthy and show a very low level of severity of degradation with respect to the profiles studied.
机译:本文探讨了人工神经网络方法在飞机发动机健康监测中的应用。数字飞行数据记录器(DFDR)具有大量数据,如果进行适当的挖掘,它们可以提供有关飞机健康的宝贵信息。飞行机组操作手册(FCOM)列出了运行概况,建议遵循这些概况,以有效地使用燃油并最大程度地减少维护工作。在提议的系统中,来自FCOM档案和“已知”飞行数据的信息已融合在一起,以训练反向传播前馈神经网络。由神经网络对所需发动机参数的预期数据进行的预测已用于监视飞行数据并诊断与FCOM配置文件相关的飞机发动机的运行状况。已经开发了Matlab GUI,以通过神经网络的Simulink模型来模拟“未知”飞行数据。 A320系列飞机的数据已用于训练和仿真模型,并在本文中详细介绍了初步结果。模拟结果表明,所使用的数据非常健康,相对于所研究的数据而言,退化的严重程度非常低。

著录项

  • 作者

    Krishnan Anjana; Ananda CM;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号