首页> 外文OA文献 >Aitchison Geometry for Probability and Likelihood as a new approach to mathematical statistics
【2h】

Aitchison Geometry for Probability and Likelihood as a new approach to mathematical statistics

机译:概率论和似然论的Aitchison几何作为一种新的数学统计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
机译:用于单纯形的Aitchison向量空间结构被概括为Hilbert空间结构A2(P),用于任意空间上的分布和似然性。可以在A2(P)的代数结构及其组成数据分析中的相应概念(例如Aitchison距离或居中对数比变换)中识别统计信息的中心符号,例如信息或似然法。根据简单的向量空间结构和成分数据分析,可以很容易地理解。例如。贝叶斯更新等统计信息的组合,似然性的组合以及鲁棒的M估计函数是A2(Pprior)中的简单加法/摄动。加权观察值对应于相应证据的加权加法。基于似然的一般指数族统计数据证明对于A2(P)特别容易解释。正则指数族形成A2(P)的有限维线性子空间,它们对应于对偶信息空间A2(Pprior)中的后验形成的有限维子空间.Aitchison范数可以用平均Fisher信息识别。关闭常数本身通过累积函数的泛化来标识,并显示为Kullback Leiblers指导的信息。 Fisher信息是由Kullback Leibler信息的A2(P)导数引起的流形的局部几何形状,因此空间A2(P)可以看作是分布P处统计推断的切线几何形状。 P)有价值的随机变量,例如估计函数或似然性,对Fisher信息作了进一步的解释,作为预期的证据平方规范和对无偏论的无尺度理解

著录项

  • 作者

    Boogaart K. Gerald van den;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号