首页> 外文OA文献 >Electronic couplings and on-site energies for hole transfer in DNA: systematic quantum mechanical/molecular dynamic study
【2h】

Electronic couplings and on-site energies for hole transfer in DNA: systematic quantum mechanical/molecular dynamic study

机译:DNA空穴传输的电子耦合和现场能量:系统的量子力学/分子动力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA
机译:DNA的电子空穴传输(HT)特性基本上受π堆栈结构的热涨落影响。取决于相邻核碱基的相互位置,电子偶合V可以改变几个数量级。在本文中,我们报告了空穴传输的电子耦合和现场能量的系统QM /分子动力学(MD)计算结果。基于几种DNA寡聚体的15 ns MD轨迹,我们计算了平均偶合平方〈V2〉以及碱基对三联体X G + Y和X A + Y的能量,其中X,Y = G,A,T和C.在32个系统中,考虑了1 000个构象,相隔1 ps。三态广义Mulliken-Hush方法用于导出相邻碱基对之间的HT电子耦合。绝热能量和偶极矩矩阵元素在INDO / S方法中计算。我们将V的均方根值与理想化B -DNA结构估计的偶联进行了比较,结果表明,在几种重要情况下,理想化B -DNA结构计算的偶联被大大低估了。发现链内偶联G-G,A-A,G-A和A-G的均方根值相似,约为0.07 eV,而链间偶联则完全不同。堆叠中的空穴状态G +和A +的能量取决于相邻对的性质。 X G + Y比X A + Y稳定0.5eV。DNA结构的热涨落促进了从鸟嘌呤到腺嘌呤的HT过程。列表耦合和现场能量可用作DNA中HT过程的理论和计算研究的参考参数

著录项

  • 作者

    Voityuk Alexander A.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号