首页> 外文OA文献 >Hardware Implementation of a Visual-Motion Pixel Using Oriented Spatiotemporal Neural Filters
【2h】

Hardware Implementation of a Visual-Motion Pixel Using Oriented Spatiotemporal Neural Filters

机译:使用定向时空神经滤波器的视觉运动像素的硬件实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A pixel for measuring two-dimensional (2-D) visual motion with two one-dimensional (1-D) detectors has been implemented in very large scale integration. Based on the spatiotemporal feature extraction model of Adelson and Bergen, the pixel is realized using a general-purpose analog neural computer and a silicon retina. Because the neural computer only offers sum-and-threshold neurons, the Adelson and Bergen\u27s model is modified. The quadratic nonlinearity is replaced with a full-wave rectification, while the contrast normalization is replaced with edge detection and thresholding. Motion is extracted in two dimensions by using two 1-D detectors with spatial smoothing orthogonal to the direction of motion. Analysis shows that our pixel, although it has some limitations, has much lower hardware complexity compared to the full 2-D model. It also produces more accurate results and has a reduced aperture problem compared to the two 1-D model with no smoothing. Real-time velocity is represented as a distribution of activity of the 18 X and 18 Y velocity-tuned neural filters
机译:已经以非常大规模的集成实现了用于利用两个一维(1-D)检测器测量二维(2-D)视觉运动的像素。基于Adelson和Bergen的时空特征提取模型,使用通用模拟神经计算机和硅视网膜实现像素。由于神经计算机仅提供阈值和阈值神经元,因此修改了Adelson和Bergen模型。二次非线性被全波整流取代,而对比度归一化则被边缘检测和阈值取代。通过使用两个一维检测器以二维方式提取运动,这些一维检测器的空间平滑度与运动方向正交。分析表明,我们的像素尽管有一些局限性,但与全二维模型相比,其硬件复杂度要低得多。与没有平滑的两个1-D模型相比,它还可以产生更准确的结果,并减少光圈问题。实时速度表示为18 X和18 Y速度调整神经过滤器的活动分布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号