首页> 外文OA文献 >Model Equations Combining Full Linear Dispersion With Long Wave Nonlinearity, Part4 - Application of Bi-CGSTAB to sparse nonsymmetric systems -
【2h】

Model Equations Combining Full Linear Dispersion With Long Wave Nonlinearity, Part4 - Application of Bi-CGSTAB to sparse nonsymmetric systems -

机译:完全线性色散与长波非线性相结合的模型方程,第4部分-Bi-CGSTAB在稀疏非对称系统中的应用-

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A skillful iterative solver is needed for handling the large, sparse nonlinear system with a nonsymmetric matrix that arises from the discretization of the model equation for nonlinear wave evolution. Recently, with favorable stability properties in iteration process, the Bi-CGSTAB method as a variant of the Bi-Conjugate Gradient method has been proposed for solving nonsymmetric linear systems. The iterative method is examined in nonlinear wave analyses on the step-type reef in two-dimensions. Numerical experiments indicate efficiency of Bi-CGSTAB, preconditioned with incomplete Choleski decomposition. For the algorithm to converge by iterative computation it is important to make the diagonal blocks of the coefficient matrix be M-matrix. Because of the linear degree of convergence of the nonlinear system, however, a successful acceleration scheme is required for further development.
机译:需要一个熟练的迭代求解器来处理具有非对称矩阵的大型稀疏非线性系统,该非对称矩阵是由非线性波演化的模型方程离散化而产生的。近年来,在迭代过程中具有良好的稳定性,提出了Bi-CGSTAB方法作为Bi-共轭梯度方法的一种变型,用于求解非对称线性系统。在二维阶梯形礁上的非线性波分析中研究了迭代方法。数值实验表明,Bi-CGSTAB的效率经过不完全Choleski分解的预处理。为了使算法通过迭代计算收敛,重要的是使系数矩阵的对角线块成为M矩阵。但是,由于非线性系统的线性收敛程度,需要成功的加速方案来进行进一步开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号