首页> 外文OA文献 >Soil to Sail - Asteroid Landers on Near-Term Sailcraft as an Evolution of the Gossamer Small Spacecraft Solar Sail Concept for In-Situ Characterization
【2h】

Soil to Sail - Asteroid Landers on Near-Term Sailcraft as an Evolution of the Gossamer Small Spacecraft Solar Sail Concept for In-Situ Characterization

机译:航行的土壤-游丝小型航天器太阳航行概念的演化,用于近期航行器上的小行星着陆器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Any effort which intends to physically interact with specific asteroids requires understanding at least of the composition and multi-scale structure of the surface layers, sometimes also of the interior. Therefore, it is necessary first to characterize each target object sufficiently by a precursor mission to design the mission which then interacts with the object. In small solar system body (SSSB) science missions, this trend towards landing and sample-return missions is most apparent. It also has led to much interest in MASCOT-like landing modules and instrument carriers. They integrate at the instrument level to their mothership and by their size are compatible even with small interplanetary missions.ududThe DLR-ESTEC GOSSAMER Roadmap NEA Science Working Groups' studies identified Multiple NEA Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The parallel Solar Polar Orbiter (SPO) study showed the ability to access any inclination and a wide range of heliocentric distances. It used a separable payload module conducting the SPO mission after delivery by sail to the proper orbit. The Displaced L1 (DL1), spaceweather early warning mission study, outlined a very lightweight sailcraft operating close to Earth, where all objects of interest to planetary defence must pass. udThese and many other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter. Since the original MNR study, significant progress has been made to explore the performance envelope of near-term solar sails for multiple NEA rendezvous. ududHowever, although it is comparatively easy for solar sails to reach and rendezvous with objects in any inclination and in the complete range of semi-major axis and eccentricity relevant to NEOs and PHOs, it remains notoriously difficult for sailcraft to interact physically with a SSSB target object as e.g. the HAYABUSA missions do. ududThe German Aerospace Center, DLR, recently brought the GOSSAMER solar sail deployment technology to qualification status in the GOSSAMER-1 project and continues the development of closely related technologies for very large deployable membrane-based photovoltaic arrays in the GOSOLAR project, on which we report separately. ududWe expand the philosophy of the GOSSAMER solar sail concept of efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions. These are equally useful for planetary defence scenarios, SSSB science and NEO utilization. We outline the technological concept used to complete such missions and the synergetic integration and operation of sail and lander.udWe similarly extend the philosophy of MASCOT and use its characteristic features as well as the concept of Constraints-Driven Engineering for a wider range of operations. For example, the MASCOT Mobility hopping mechanism has already been adapted to the specific needs of MASCOT2. Utilizing sensors as well as predictions, those actuators could in a further development be used to implement anti-bouncing control schemes, by counteracting with the lander's rotation. Furthermore by introducing sudden jerk into the lander by utilization of the mobility, layers of loose regolith can be swirled up for sampling.
机译:旨在与特定小行星物理相互作用的任何努力都需要至少了解表层的组成和多尺度结构,有时还需要了解内部结构。因此,有必要首先通过先验任务来充分表征每个目标对象,以设计然后与该对象进行交互的任务。在小型太阳系机构(SSSB)科学任务中,这种着陆和返回样品任务的趋势最为明显。这也引起了对类似于MASCOT的着陆模块和仪器架的兴趣。它们在仪器级别集成到其母体中,并且即使在小型行星际飞行任务中,它们的大小也可以兼容。 ud ud仅在太阳帆推进时可行。平行的太阳极地轨道器(SPO)研究表明,能够获得任何倾斜度和大范围的日心距。在航行到正确的轨道后,它使用了一个可分离的有效载荷模块来执行SPO任务。太空天气预警任务研究《位移的L1(DL1)》概述了在地球附近操作的非常轻巧的帆艇,行星防御系统所有感兴趣的物体都必须经过该帆艇。这些和许多其他研究概述了太阳帆至少在木星轨道内提供进入所有SSSB的独特能力。自最初的MNR研究以来,在探索多个NEA集合点的近期太阳帆性能范围方面取得了重大进展。 ud ud但是,尽管太阳帆相对容易以任何倾斜度以及在与NEO和PHO有关的半长轴和偏心距的整个范围内与物体会合,但是众所周知,帆船仍然很难与SSSB目标对象,例如HAYABUSA的任务。 ud ud德国航空航天中心(DLR)最近将GOSSAMER太阳帆部署技术带入了GOSSAMER-1项目的资格认证状态,并继续在GOSOLAR项目中为大型可部署的基于膜的光伏阵列开发紧密相关的技术。我们将另行报告。 ud ud我们扩展了高效多子航天器集成的GOSSAMER太阳帆概念的理念,其中还包括用于单向原位研究和样品返回任务的着陆器。这些对于行星防御方案,SSSB科学和NEO利用率同样有用。我们概述了用于完成此类任务的技术概念,以及帆和着陆器的协同集成和操作。 ud我们同样扩展了MASCOT的理念,并利用其特色功能以及“约束驱动工程”的概念来进行更广泛的操作。例如,MASCOT移动跳跃机制已经适应了MASCOT2的特定需求。利用传感器和预测,这些执行器可以在进一步的发展中,通过抵消着陆器的旋转来实现防弹跳控制方案。此外,通过利用流动性将突然的冲击引入到着陆器中,松散的粉煤灰层可以被涡旋起来进行采样。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号