首页> 外文OA文献 >On the (un)decidability of fuzzy description logics under Lukasiewicz t-norm
【2h】

On the (un)decidability of fuzzy description logics under Lukasiewicz t-norm

机译:Lukasiewicz t模下模糊描述逻辑的(不可)判定性

摘要

Recently there have been some unexpected results concerning Fuzzy Description Logics (FDLs) with General Concept Inclusions (GCIs). They show that, unlike the classical case, the DL ALC with GCIs does not have the finite model property under Å?ukasiewicz Logic or Product Logic, the proposed reasoning algorithms are neither correct nor complete and, specifically, knowledge base satisfiability is an undecidable problem for Product Logic. In this work, we show that knowledge base satisfiability is also an undecidable problem for Å?ukasiewicz Logic. We additionally provide a decision algorithm for acyclic ALC knowledge bases under Å?ukasiewicz Logic via a Mixed Integer Linear Programming (MILP) based procedure (note, however, that the decidability of this problem is already known). While similar MILP based algorithms have been proposed in the literature for acyclic ALC knowledge bases under Å?ukasiewicz Logic, none of them exhibit formal proofs of their correctness and completeness, which is the additional contribution here. © 2012 Elsevier Inc. All rights reserved.
机译:最近,关于带有通用概念包含(GCI)的模糊描述逻辑(FDL)出现了一些出乎意料的结果。他们表明,与经典情况不同,带有GCI的DL ALC在ÅukasiewiczLogic或Product Logic下不具有有限的模型属性,所提出的推理算法既不正确也不完整,特别是知识库的可满足性是一个无法确定的问题用于产品逻辑。在这项工作中,我们证明知识库的可满足性对于ÅukasiewiczLogic也是一个无法确定的问题。我们还通过基于混合整数线性规划(MILP)的过程为Åukasiewicz逻辑下的非循环ALC知识库提供了一种决策算法(但是,请注意,此问题的可判定性是已知的)。尽管在文献中已经针对Åukasiewicz逻辑下的非循环ALC知识库提出了类似的基于MILP的算法,但是这些算法都没有展现出其正确性和完整性的形式证明,这是本文的另一贡献。 ©2012 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号