首页> 外文OA文献 >Model-Selection-Based Approach for Calculating Cellular Multiplicity of Infection during Virus Colonization of Multi-Cellular Hosts
【2h】

Model-Selection-Based Approach for Calculating Cellular Multiplicity of Infection during Virus Colonization of Multi-Cellular Hosts

机译:基于模型选择的方法,用于在多细胞宿主病毒定殖期间计算感染细胞的多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cellular multiplicity of infection (MOI) is a key parameter for describing the interactions between virions and cells, predicting the dynamics of mixed-genotype infections, and understanding virus evolution. Two recent studies have reported in vivo MOI estimates for Tobacco mosaic virus (TMV) and Cauliflower mosaic virus (CaMV), using sophisticated approaches to measure the distribution of two virus variants over host cells. Although the experimental approaches were similar, the studies employed different definitions of MOI and estimation methods. Here, new model-selection-based methods for calculating MOI were developed. Seven alternative models for predicting MOI were formulated that incorporate an increasing number of parameters. For both datasets the best-supported model included spatial segregation of virus variants over time, and to a lesser extent aggregation of virus-infected cells was also implicated. Three methods for MOI estimation were then compared: the two previously reported methods and the best-supported model. For CaMV data, all three methods gave comparable results. For TMV data, the previously reported methods both predicted low MOI values (range: 1.04–1.23) over time, whereas the best-supported model predicted a wider range of MOI values (range: 1.01–2.10) and an increase in MOI over time. Model selection can therefore identify suitable alternative MOI models and suggest key mechanisms affecting the frequency of coinfected cells. For the TMV data, this leads to appreciable differences in estimated MOI values.
机译:感染的细胞多样性(MOI)是描述病毒体与细胞之间相互作用,预测混合基因型感染动态以及了解病毒进化的关键参数。两项最新研究报告了使用复杂方法测量两种病毒变体在宿主细胞上的分布的体内烟草花叶病毒(TMV)和花椰菜花叶病毒(CaMV)的MOI估计值。尽管实验方法相似,但研究采用了不同的MOI定义和估算方法。在这里,开发了用于计算MOI的新的基于模型选择的方法。制定了七个预测MOI的替代模型,其中包含越来越多的参数。对于这两个数据集,最受支持的模型包括随时间推移病毒变体的空间分离,并且在较小程度上还涉及病毒感染细胞的聚集。然后比较了三种MOI估算方法:两种先前报告的方法和最佳支持的模型。对于CaMV数据,这三种方法均给出了可比的结果。对于TMV数据,以前报道的方法都预测随着时间的推移MOI值较低(范围:1.04–1.23),而得到最佳支持的模型则预测MOI值的范围更广(范围:1.01-2.10)并且MOI随时间增加。因此,模型选择可以确定合适的替代MOI模型,并提出影响共感染细胞频率的关键机制。对于TMV数据,这会导致MOI估计值出现明显差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号