首页> 外文OA文献 >Influence of Mn2+ concentration on Mn2+ -doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties
【2h】

Influence of Mn2+ concentration on Mn2+ -doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties

机译:Mn2 +浓度对Mn2 +掺杂的ZnS量子点合成的影响:结构和光致发光性能的评估

摘要

The intentional introduction of transition metal impurities into semiconductor nanocrystals is an attractive approach for tuning quantum dot photoluminescence emission. Particularly, doping of ZnS quantum dots with Mn2+ (Mn:ZnS QDs) results in a phosphorescence-type emission, attributed to the incorporation of manganese ions into the nanocrystal structure, so that delayed radiational deactivation of the energy of nanoparticles, excited through the energy levels of the metal, is enabled. However, the development of effective doping strategies can be challenging, especially if a highly efficient photoluminescent emission within a known crystalline core structure, is required (e.g. for analytical phosphorescence applications). The spectroscopic properties and the crystal structure of Mn2+-doped ZnS QDs are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the presence of Mn2+ and its concentration used during the synthesis. In order to further control and optimize the synthesis of doped QDs for future bioanalytical applications, different complementary techniques including photoluminescence and X-ray powder diffraction have been employed. The information obtained has allowed standardization of the synthesis conditions of these doped QDs and the identification and quantification of the crystal phases obtained under different synthesis conditions.
机译:有意将过渡金属杂质引入半导体纳米晶体是一种用于调节量子点光致发光发射的有吸引力的方法。特别是,用Mn2 +(Mn:ZnS QDs)掺杂ZnS量子点会导致磷光型发射,这归因于锰离子掺入纳米晶体结构中,从而使通过能量激发的纳米粒子能量的辐射钝化延迟。金属的水平。然而,开发有效的掺杂策略可能是具有挑战性的,特别是如果需要在已知的晶体芯结构内进行高效的光致发光发射时(例如对于分析磷光应用而言)。此处研究了掺杂Mn2 +的ZnS QD的光谱性质和晶体结构,以更好地理解Mn2 +的存在及其在合成过程中使用的浓度如何影响发光发射和晶体组成。为了进一步控制和优化掺杂QD的合成以用于未来的生物分析应用,已采用了包括光致发光和X射线粉末衍射在内的各种互补技术。所获得的信息使得这些掺杂的量子点的合成条件得以标准化,并且可以鉴定和量化在不同合成条件下获得的晶相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号