首页> 外文OA文献 >Self-adaptive lower confidence bound: A new general and effective prescreening method for Gaussian Process surrogate model assisted evolutionary algorithms
【2h】

Self-adaptive lower confidence bound: A new general and effective prescreening method for Gaussian Process surrogate model assisted evolutionary algorithms

机译:自适应下置信界:高斯过程替代模型辅助进化算法的一种通用有效的预筛选方法

摘要

Surrogate model assisted evolutionary algorithms are receiving much attention for the solution of optimization problems with computationally expensive function evaluations. For small scale problems, the use of a Gaussian Process surrogate model and prescreening methods has proven to be effective. However, each commonly used prescreening method is only suitable for some types of problems, and the proper prescreening method for an unknown problem cannot be stated beforehand. In this paper, the four existing prescreening methods are analyzed and a new method, called self-adaptive lower confidence bound (ALCB), is proposed. The extent of rewarding the prediction uncertainty is adjusted on line based on the density of samples in a local area and the function properties. The exploration and exploitation ability of prescreening can thus be better balanced. Experimental results on benchmark problems show that ALCB has two main advantages: (1) it is more general for different problem landscapes than any of the four existing prescreening methods; (2) it typically can achieve the best result among all available prescreening methods.
机译:代理模型辅助的进化算法因计算代价高昂的函数评估而在解决优化问题方面引起了广泛关注。对于小规模问题,已证明使用高斯过程替代模型和预筛选方法是有效的。但是,每种常用的预筛选方法仅适用于某些类型的问题,并且无法预先说明针对未知问题的适当预筛选方法。本文对现有的四种预筛选方法进行了分析,提出了一种新的方法,即自适应下置信界(ALCB)。根据局部区域中的样本密度和函数属性,在线调整对预测不确定性的奖励程度。因此可以更好地平衡预筛选的探索和开发能力。关于基准问题的实验结果表明,ALCB具有两个主要优点:(1)对于不同的问题情况,它比四种现有的预筛选方法中的任何一种更为通用; (2)通常可以在所有可用的预筛选方法中获得最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号