首页> 外文OA文献 >A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems
【2h】

A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems

机译:高斯工艺代理模型辅助进化进化算法为中等规模昂贵优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surrogate model assisted evolutionary algorithms (SAEAs) have recently attracted much attention due to the growing need for computationally expensive optimization in many real-world applications. Most current SAEAs, however, focus on small-scale problems. SAEAs for medium-scale problems (i.e., 20-50 decision variables) have not yet been well studied. In this paper, a Gaussian process surrogate model assisted evolutionary algorithm for medium-scale computationally expensive optimization problems (GPEME) is proposed and investigated. Its major components are a surrogate model-aware search mechanism for expensive optimization problems when a high-quality surrogate model is difficult to build and dimension reduction techniques for tackling the 'curse of dimensionality.' A new framework is developed and used in GPEME, which carefully coordinates the surrogate modeling and the evolutionary search, so that the search can focus on a small promising area and is supported by the constructed surrogate model. Sammon mapping is introduced to transform the decision variables from tens of dimensions to a few dimensions, in order to take advantage of Gaussian process surrogate modeling in a low-dimensional space. Empirical studies on benchmark problems with 20, 30, and 50 variables and a real-world power amplifier design automation problem with 17 variables show the high efficiency and effectiveness of GPEME. Compared to three state-of-the-art SAEAs, better or similar solutions can be obtained with 12% to 50% exact function evaluations. © 1997-2012 IEEE.
机译:代理模型辅助进化算法(SAEAS)最近引起了很多关注,因为在许多现实世界应用中的计算昂贵优化的需求越来越多。然而,大多数当前的SAEAS专注于小规模问题。 SAEAS用于中型问题(即20-50个决策变量)尚未得到很好的研究。本文提出了一种高斯工艺代理模型辅助进化进化进化算法,用于中规模计算昂贵的优化问题(GPEME)。当高质量代理模型难以构建和维持“维度诅咒”时,其主要组件是替代优化问题的替代优化问题。在GPEME中开发并用于GPEME的新框架,该框架仔细协调了代理建模和进化搜索,以便搜索可以专注于小型有希望的区域,并由构造的代理模型支持。介绍了三个映射以将决策变量转换为几十尺寸到几个维度,以利用高斯过程在低维空间中的替代建模。具有17个变量的20,30和50个变量和现实世界功率放大器设计自动化问题的基准问题的实证研究显示了GPEME的高效率和有效性。与三个最先进的SAAS相比,可以获得更好或更类似的解决方案,以12%至50%的精确函数评估。 ©1997-2012 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号