首页> 外文OA文献 >Multitemporal quality assessment of grassland and cropland objects of a topographic dataset
【2h】

Multitemporal quality assessment of grassland and cropland objects of a topographic dataset

机译:地形数据集草地和农田对象的多时相质量评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As a consequence of the wide-spread application of digital geo-data in geographic information systems (GIS), quality control has become increasingly important to enhance the usefulness of the data. For economic reasons a high degree of automation is required for the quality control process. This goal can be achieved by automatic image analysis techniques. An example of how this can be achieved in the context of quality assessment of cropland and grassland GIS objects is given in this paper. The quality assessment of these objects of a topographic dataset is carried out based on multi-temporal information. The multi-temporal approach combines the channels of all available images as a multilayer image and applies a pixel-based SVM-classification. In this way multispectral as well as multi-temporal information is processed in parallel. The features used for the classification consist of spectral, textural (Haralick features) and structural (features derived from a semi-variogram) features. After the SVM-classification, the pixel-based result is mapped to the GIS-objects. Finally, a simple ruled-based approach is used in order to verify the objects of a GIS database. The approach was tested using a multi-temporal data set consisting of one 5-channel RapidEye image (GSD 5m) and two 3-channel Disaster Monitoring Constellation (DMC) images (GSD 32m). All images were taken within one year. The results show that by using our approach, quality control of GIS-cropland and grassland objects is possible and the human operator saves time using our approach compared to a completely manual quality assessment.
机译:由于数字地理数据在地理信息系统(GIS)中的广泛应用,质量控制对于提高数据的实用性变得越来越重要。出于经济原因,质量控制过程需要高度自动化。此目标可以通过自动图像分析技术来实现。本文给出了一个在农田和草地GIS对象的质量评估中如何实现这一目标的示例。基于多时相信息对地形数据集的这些对象进行质量评估。多时间方法将所有可用图像的通道组合为多层图像,并应用基于像素的SVM分类。以这种方式,并行处理多光谱信息和多时间信息。用于分类的特征包括光谱,纹理(Haralick特征)和结构(从半变异函数得出的特征)特征。在进行SVM分类之后,基于像素的结果将映射到GIS对象。最后,使用一种基于规则的简单方法来验证GIS数据库的对象。使用多时间数据集对该方法进行了测试,该数据集包括一个5通道RapidEye图像(GSD 5m)和两个3通道灾难监测星座(DMC)图像(GSD 32m)。所有图像均在一年内拍摄。结果表明,通过使用我们的方法,与完全手动的质量评估相比,可以对GIS作物和草地物体进行质量控制,并且操作员可以使用我们的方法节省时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号