首页> 外文OA文献 >A Particle-Based Model for Effective Properties in Infiltrated Solid Oxide Fuel Cell Electrodes
【2h】

A Particle-Based Model for Effective Properties in Infiltrated Solid Oxide Fuel Cell Electrodes

机译:基于粒子的固体氧化物燃料电池渗透电极有效性能模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A modeling framework for the numerical reconstruction of the microstructure of infiltrated electrodes is presented in this study. A particle-based sedimentation algorithm is used to generate the backbone, while a novel packing algorithm is used to randomly infiltrate nanoparticles on the surface of backbone particles. The effective properties, such as the connected triple-phase boundary length, the effective conductivity, the effective diffusivity, are evaluated on the reconstructed electrodes by using geometric analysis, finite volume and random-walk methods, and reported in dimensionless form to provide generality to the results. A parametric study on the effect of the main model and operating parameters is performed. Simulations show that the critical loading (i.e., the percolation threshold) increases as the backbone porosity decreases and the nanoparticle diameter increases. Large triple-phase boundary length, specific surface area and good effective conductivity can be reached by infiltration, without detrimental effects on the effective transport properties in gas phase. Simulations reveal a significant sensitivity to the size and contact angle of infiltrated particles, suggesting that the preparation process of infiltrated electrodes should be properly tailored in order to obtain the optimized structures predicted by the model.
机译:在这项研究中提出了一个数值重建渗透电极的微观结构的建模框架。使用基于粒子的沉降算法生成主干,而使用新颖的填充算法将纳米颗粒随机渗透到主干颗粒的表面。通过使用几何分析,有限体积和随机游走方法,在重构电极上评估了连接的三相边界长度,有效电导率,有效扩散率等有效特性,并以无量纲形式进行报告,以提供通用性。结果。对主要模型和操作参数的影响进行了参数研究。模拟表明,随着主链孔隙率的降低和纳米颗粒直径的增加,临界载荷(即,渗滤阈值)也增加。通过渗透可以达到较大的三相边界长度,比表面积和良好的有效电导率,而不会对气相的有效传输性能产生不利影响。模拟显示出对渗透颗粒的大小和接触角的显着敏感性,表明渗透电极的制备过程应适当地调整以便获得模型预测的优化结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号