首页> 外文OA文献 >Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal
【2h】

Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal

机译:深度神经网络用于合成音频信号中的微光逼近

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shimmer is a classical acoustic measure of the amplitude perturbation of a signal. This kind of variation in the human voice allow to characterize some properties, not only of the voice itself, but of the person who speaks. During the last years deep learning techniques have become the state of the art for recognition tasks on the voice. In this work the relationship between shimmer and deep neural networks is analyzed.A deep learning model is created. It is able to approximate shimmer value of a simple synthesized audio signal (stationary and without formants) taking the spectrogram as input feature. It is concluded firstly, that for this kind of synthesized signal, a neural network like the one we proposed can approximate shimmer, and secondly, that the convolution layers can be designed in order to preserve the information of shimmer and transmit it to the following layers.
机译:闪烁是信号幅度扰动的经典声学度量。人类语音的这种变化不仅可以表征语音本身的特征,还可以表征说话者的某些特征。在过去的几年中,深度学习技术已成为语音识别任务的最新技术。在这项工作中,分析了微光和深度神经网络之间的关系。创建了深度学习模型。它能够以频谱图为输入特征,近似简单合成音频信号(静态和无共振峰)的闪光值。结论是:首先,对于这种合成信号,像我们提出的那样的神经网络可以近似闪光,其次,可以设计卷积层以保留闪光信息并将其传输到后续层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号