首页> 外文OA文献 >Feature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer׳s disease
【2h】

Feature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer׳s disease

机译:基于非线性语音模型的情绪反应自动分析特征选择,适用于阿尔茨海默氏病的诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.
机译:阿尔茨海默氏病(AD)是老年人中最常见的痴呆类型。这项工作是一项大型研究的一部分,该研究旨在识别用于早期检测AD及其严重程度的新技术和生物标记物或特征。该诊断是通过分析几种生物标记物并进行各种测试来做出的(尽管只有对患者脑组织进行验尸检查才能提供确定的确认)。非侵入性智能诊断技术将是非常有价值的诊断工具。本文涉及基于经典和新的情感语音特征:情感温度(ET)和分形维数(FD)的自发语音自动分析(AAER)。这是一项临床前研究,旨在验证测试和生物标志物,以备将来使用。该方法具有非侵入性,低成本和没有任何副作用的巨大优点。 AAER显示出非常有希望的结果,可用于AD的早期诊断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号