首页> 外文OA文献 >On the interaction of observation and prior error correlations in data assimilation
【2h】

On the interaction of observation and prior error correlations in data assimilation

机译:数据同化中观测值与先验误差相关性的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The importance of prior error correlations in data assimilation has long been known, however, observation error correlations have typically been neglected. Recent progress has been made in estimating and accounting for observation error correlations, allowing for the optimal use of denser observations. Given this progress, it is now timely to ask how prior and observation error correlations interact and how this affects the value of the observations in the analysis. Addressing this question is essential to understanding the optimal design of future observation networks for high-resolution numerical weather prediction. This paper presents new results which unify and advance upon previous studies on this topic. ududThe interaction of the prior and observation error correlations is illustrated with a series of 2-variable experiments in which the mapping between the state and observed variables (the observation operator) is allowed to vary. In an optimal system, the reduction in the analysis error variance and spread of information is shown to be greatest when the observation and prior errors have complementary statistics. For example, in the case of direct observations, when the correlations between the observation and prior errors have opposite signs. This can be explained in terms of the relative uncertainty of the observations and prior on different spatial scales. The results from these simple 2-variable experiments are used to inform the optimal observation density for observations of a circular domain (with 32 grid points). It is found that dense observations are most beneficial when they provide a more accurate estimate of the state at smaller scales than the prior estimate. In the case of second order auto-regressive correlation functions, this is achieved when the lengthscales of the observation error correlations are greater than those of the prior estimate and the observations are direct measurements of the state variables.
机译:人们早就知道先验误差相关在数据同化中的重要性,但是,通常忽略了观察误差相关。在估计和解释观测误差相关性方面已经取得了最新进展,从而可以更好地利用密集观测。有了这一进展,现在就可以提出问题,即先验误差相关性和观察误差相关性如何相互作用,以及这如何影响分析中观察值的及时性。解决此问题对于理解未来用于高分辨率数值天气预报的观测网络的最佳设计至关重要。本文提出了新的结果,这些结果在先前对该主题的研究中得到了统一和发展。 ud ud先验误差相关性和观察误差相关性之间的相互作用通过一系列2变量实验进行说明,其中状态和观察变量(观察算子)之间的映射可以改变。在最佳系统中,当观察误差和先验误差具有互补统计量时,分析误差方差和信息传播的减少将显示为最大。例如,在直接观测的情况下,当观测与先前误差之间的相关性具有相反的符号时。这可以用观测值的相对不确定性和不同空间尺度上的先验来解释。这些简单的2变量实验的结果用于告知最佳观察密度,用于观察圆形域(具有32个网格点)。发现密集的观测在以比先前的估计更小的尺度提供更准确的状态估计时,是最有益的。在二阶自回归相关函数的情况下,当观测误差相关的长度尺度大于先前估计的尺度并且观测是状态变量的直接测量值时,就可以实现这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号