首页> 外文OA文献 >Low-dimensional space- and time-coupled power system control policies driven by high-dimensional ensemble weather forecasts
【2h】

Low-dimensional space- and time-coupled power system control policies driven by high-dimensional ensemble weather forecasts

机译:高维整体天气预报驱动的低维时空耦合电力系统控制策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many predictive control problems can be solved at lower cost if the practitioner is able to make use of a high-dimensional forecast of exogenous uncertain quantities. For example, power system operators must accommodate significant short-term uncertainty in renewable energy infeeds. These are predicted using sophisticated numerical weather models, which produce an ensemble of scenarios for the evolution of atmospheric conditions. We describe a means of incorporating such forecasts into a multistage optimization framework able to make use of spatial and temporal correlation information. We derive an optimal procedure for reducing the size of the look-ahead problem by generating a low-dimensional representation of the uncertainty, while still retaining as much information as possible from the raw forecast data. We then demonstrate application of this technique to a model of the Great Britain grid in 2030, driven by the raw output of a real-world high-dimensional weather forecast from the U.K. Met Office. We also discuss applications of the approach beyond power systems.
机译:如果从业者能够利用外生不确定量的高维预测,则可以以较低的成本解决许多预测控制问题。例如,电力系统运营商必须在可再生能源供应中考虑到很大的短期不确定性。这些是使用复杂的数值天气模型进行预测的,该模型为大气条件的演变提供了一系列情景。我们描述了一种将这样的预测合并到能够利用空间和时间相关信息的多阶段优化框架中的方法。通过生成不确定性的低维表示,同时仍保留来自原始预测数据的尽可能多的信息,我们得出了减少前瞻问题大小的最佳过程。然后,我们将在英国气象局的真实世界高维天气预报的原始输出的驱动下,演示该技术在2030年在英国网格模型中的应用。我们还将讨论该方法在电力系统之外的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号