首页> 外文OA文献 >A single-column model ensemble approach applied to the TWP-ICE experiment
【2h】

A single-column model ensemble approach applied to the TWP-ICE experiment

机译:单列模型集成方法应用于TWP-ICE实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
机译:单列模型(SCM)是有用的试验床,用于研究数值天气预报和气候模型的参数化方案。但是,SCM模拟的有用性受到规定的最佳估计大型观测值的准确性的限制。估计观测值的误差将导致建模模拟的不确定性。解决建模不确定性的一种方法是在集成成员跨越观察不确定性的情况下模拟集成。这项研究首先基于对最佳估计产品中可能的误差源的估计,得出了热带暖池国际云实验(TWP-ICE)的大规模数据集合。然后,这些数据将用于使用11个SCM和两个云解析模型(CRM)进行仿真。还执行最佳估计模拟。所有模型均表明,与湿度有关的变量接近观测值,最佳估计值与总体平均值之间的差异有限。但是,这些模型对强迫变化表现出不同的敏感性,特别是在弱强迫情况下。集成仿真突出显示了SCM和CRM之间水分预算的表面蒸发项之间的重要差异。在云变量的整体平均垂直结构中,模型之间的差异也很明显,而对于每个模型,云属性对强迫相对不敏感。该集合还用于调查云量和降水,并确定CRM和SCM之间的差异,特别是涉及冰的关系。这项研究强调了可以使用集成仿真执行的其他分析,因此与仅使用更传统的单一最佳估计仿真相比,可以进行更完整的模型研究。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号