首页> 外文OA文献 >FOREST CARBON MAPPING AND SPATIAL UNCERTAINTY ANALYSIS: COMBINING NATIONAL FOREST INVENTORY DATA AND LANDSAT TM IMAGES
【2h】

FOREST CARBON MAPPING AND SPATIAL UNCERTAINTY ANALYSIS: COMBINING NATIONAL FOREST INVENTORY DATA AND LANDSAT TM IMAGES

机译:森林碳映射和空间不确定性分析:结合国家森林调查数据和LANDSAT TM图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Being able to accurately map forest carbon is a critical step in the global carbon cycle modeling and management process. This project is aimed at enhancing the current methodologies used for forest carbon mapping, and applying a method to account for any errors produced. By doing so, more accurate decisions can be made based on the knowledge gained from forest carbon maps; such as policy decisions on how to manage forests, or how to mitigate climate change. The use of remotely sensed images, in combination with Forest Inventory and Analysis (FIA) data, is one such way of doing this. This study compared three different methods; including linear regression, cosimulation, and up-scaled cosimulation to interpolate forest carbon based on a defined relationship between sample plots of national FIA data and satellite images. An uncertainty analysis was completed in an effort to quantify, and separate the different sources of error produced within a cosimulation mapping effort. The results indicated that the band ratio of TM4 / TM5 + TM4 / TM7 had the highest correlation coefficient, around 0.56, with the FIA forest carbon values. At a resolution of 90 m ×by 90 m, co-simulation predicted carbon values from about 14 Mg/ha, to 135 Mg/ha. The regression model, at the same resolution, estimated carbon values from about -17 Mg/ha, to 2,400 Mg/ha. Up-scaled cosimulation at a resolution of 990 m x× 990 m, predicted carbon values of ranging from 16 Mg/ha, to 133 Mg/ha. The uncertainty analysis was unable to produce any statistically significant results, with all R2 values below 0.1. These results showed that using a linear regression produced some impossible estimates, while cosimulation led to more realistic values. However, no conclusion can be made when comparing the methods based on the map validation techniques used. Although limited validation of the results was conducted, using both the FIA data and some independent sampling data; further work that focuses on validation is recommended.
机译:能够准确绘制森林碳图是全球碳循环建模和管理过程中的关键步骤。该项目旨在增强用于森林碳测绘的当前方法,并应用一种方法来解决产生的任何错误。通过这样做,可以基于从森林碳图获得的知识做出更准确的决策;例如关于如何管理森林或如何减轻气候变化的政策决定。一种将遥感图像与森林清单和分析(FIA)数据结合使用的方法就是这样。这项研究比较了三种不同的方法。包括基于国家FIA数据样本图和卫星图像之间已定义关系的线性回归,协同模拟和高级协同模拟以内插森林碳。完成了不确定性分析,以量化并分离在协同仿真映射工作中产生的不同误差源。结果表明,TM4 / TM5 + TM4 / TM7的谱带比与国际汽联森林碳值的相关系数最高,约为0.56。在90 m×90 m的分辨率下,共同模拟预测的碳值从约14 Mg / ha到135 Mg / ha。在相同的分辨率下,回归模型估计的碳值约为-17 Mg / ha至2400 Mg / ha。以990 m x×990 m的分辨率进行了大规模的协同模拟,预测的碳值范围从16 Mg / ha到133 Mg / ha。不确定性分析无法产生任何统计学上显着的结果,所有R2值均低于0.1。这些结果表明,使用线性回归可以得出一些不可能的估计,而协同仿真则可以得出更实际的值。但是,在比较基于所用地图验证技术的方法时无法得出任何结论。尽管使用FIA数据和一些独立的采样数据对结果进行了有限的验证;建议进一步进行验证工作。

著录项

  • 作者

    Fleming Andrew Lawrence;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号