首页> 外文OA文献 >On the equivalence of dynamic relaxation and the Newton-Raphson method: application to the design and analysis of bending-active structures
【2h】

On the equivalence of dynamic relaxation and the Newton-Raphson method: application to the design and analysis of bending-active structures

机译:动态松弛与牛顿-拉夫森法的等效性:在弯曲主动结构设计与分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamic relaxation is a form-finding and analysis method that has proven its effectiveness in the context of tension/compression structures such as cable nets, membranes and tensegrity structures. Recently, however, an increasing interest in bending-active structures has stimulated researchers to include the effects of bending and torsion in the dynamic relaxation process, using either Three-Degree-of-Freedom (3-DoF) beam elements (Barnes et al. [4]), or 4-DoF beam elements (Du Peloux et al. [12], D’Amico et al. [10]), or 6-DoF beam elements (Li and Knippers [13]). The stability and convergence speed of the dynamic relaxation solver depends on the choice of the fictitious masses for all degrees of freedom. Although 6-DoF beam elements are in principle preferred over 3-DoF and 4-DoF beam elements because of their higher accuracy (D’Amico et al. [10]), their use in dynamic relaxation is hindered by the fact that no heuristic rules are available for the choice of the fictitious masses.In this paper the numerical stability of the dynamic relaxation solver is investigated for 6-DoF beam elements using modal analysis. A fictitious mass matrix proportional to the stiffness matrix is put forward as the most suitable choice considering numerical stability and convergence, as it causes all eigenfrequencies of the structure to coincide. Moreover, it is shown that for this choice of mass matrix and a specific choice for the damping ratio and the time step, the dynamic relaxation method becomes identical to the Newton-Raphson method, which is well known for its fast convergence. For numerically challenging problems, the stability of the classic Newton-Raphson method can be improved by increasing the damping ratio and/or decreasing the time step.We applied the proposed approach to three test cases involving bending-active structures in order to verify its accuracy and convergence speed. The results show that the dynamic relaxation routine indeed converges in a very small number of iterations, while still maintaining the accuracy of 6-DoF beam elements. The combination of high accuracy and low computation time makes this approach well-suited for both the form finding and the analysis of spatial structures undergoing large displacements.
机译:动态松弛是一种形式发现和分析方法,已证明其在张力/压缩结构(如电缆网,膜和张紧结构)中的有效性。然而,近来,人们对弯曲活动结构的兴趣日益浓厚,这刺激了研究人员使用三自由度(3-DoF)梁单元将弯曲和扭转的影响纳入动态松弛过程中(Barnes等。 [4]或4自由度的梁单元(Du Peloux等人[12],D'Amico等[10])或6自由度的梁单元(Li和Knippers [13])。动态弛豫求解器的稳定性和收敛速度取决于对所有自由度的虚拟质量的选择。尽管原则上6-DoF梁元素比3-DoF和4-DoF梁元素更可取(D'Amico等人[10]),但由于没有启发式技术,因此阻碍了它们在动态松弛中的使用。本文采用模态分析方法研究了六自由度梁单元动力松弛求解器的数值稳定性。考虑到数值稳定性和收敛性,提出与刚度矩阵成比例的虚拟质量矩阵作为最合适的选择,因为它会使结构的所有本征频率一致。此外,表明对于质量矩阵的这种选择以及对阻尼比和时间步长的特定选择,动态松弛方法变得与以快速收敛着称的牛顿-拉夫森方法相同。对于数值难题,可以通过增加阻尼比和/或减少时间步长来提高经典牛顿-拉夫森方法的稳定性。我们将所提出的方法应用于涉及弯曲活动结构的三个测试案例,以验证其准确性和收敛速度。结果表明,动态弛豫例程确实收敛了很少的迭代次数,同时仍保持了6自由度梁元素的精度。高精度和低计算时间的结合使该方法非常适合形式查找和承受大位移的空间结构分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号