首页> 外文OA文献 >A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection
【2h】

A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection

机译:基于模型的多因素降维用于上位性检测的参数和非参数检验的鲁棒性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Applying a statistical method implies identifying underlying (model) assumptions and checking their validity in the particular context. One of these contexts is association modeling for epistasis detection. Here, depending on the technique used, violation of model assumptions may result in increased type I error, power loss, or biased parameter estimates. Remedial measures for violated underlying conditions or assumptions include data transformation or selecting a more relaxed modeling or testing strategy. Model-Based Multifactor Dimensionality Reduction (MB-MDR) for epistasis detection relies on association testing between a trait and a factor consisting of multilocus genotype information. For quantitative traits, the framework is essentially Analysis of Variance (ANOVA) that decomposes the variability in the trait amongst the different factors. In this study, we assess through simulations, the cumulative effect of deviations from normality and homoscedasticity on the overall performance of quantitative Model-Based Multifactor Dimensionality Reduction (MB-MDR) to detect 2-locus epistasis signals in the absence of main effects.
机译:应用统计方法意味着要识别基本(模型)假设并在特定情况下检查其有效性。这些上下文之一是用于上位性检测的关联模型。在此,根据所使用的技术,违反模型假设可能会导致I型错误,功率损耗或参数估计偏差。违反基本条件或假设的补救措施包括数据转换或选择更为宽松的建模或测试策略。用于上位性检测的基于模型的多因素降维(MB-MDR)依赖于性状和由多基因座基因型信息组成的因素之间的关联测试。对于数量性状,该框架本质上是方差分析(ANOVA),可以分解不同因素之间性状的变异性。在这项研究中,我们通过模拟评估偏离正态性和均方差性对基于模型的定量多因素降维(MB-MDR)定量检测2位上位信号的总体性能的累积影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号