首页> 外文OA文献 >Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model
【2h】

Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model

机译:基于运动数据和生物力学模型的实时步态事件检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat (FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic (NP) control. Three real-time threshold-based algorithms have been developed, detecting the aforementioned events based on kinematic data in combination with a biomechanical model.Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events was obtained using marker and force plate data. All algorithms had excellent precision and no false positives were observed. Timing delays of the presented algorithms were similar to current state of the art algorithms for the detection of IC and TO, whereas smaller delays were achieved for the detection of FF. Our results indicate that, based on their high precision and low delays, these algorithms can be used for the control of a NR/NP, with exception of the HO event. Kinematic data is used in most NR/NP control schemes and thus available at no additional cost, resulting in a minimal computational burden. The presented methods can also be applied for screening pathological gait or in general gait analysis in/outside of the laboratory.
机译:实时检测多种姿势事件,尤其是初始接触(IC),足部扁平(FF),脚跟脱(HO)和脚趾脱(TO),可以极大地有益于神经机器人(NR)和神经修复(NP)控制。已经开发了三种基于阈值的实时算法,结合运动学数据和生物力学模型来检测上述事件.7位受试者在仪器的跑步机上以三种速度行走的数据被用于验证所提出的算法,并累积到总共558个步骤。使用标记和测力板数据获得步态事件的参考。所有算法都具有极好的精度,并且没有观察到假阳性。所提出的算法的定时延迟类似于用于IC和TO的检测的当前技术水平的算法,而对于FF的检测则获得了较小的延迟。我们的结果表明,基于它们的高精度和低延迟,这些算法可用于控制NR / NP(HO事件除外)。运动学数据用于大多数NR / NP控制方案中,因此无需额外费用即可获得,从而将计算负担降至最低。提出的方法也可用于筛选病理步态或在实验室内外进行总体步态分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号