首页> 外文OA文献 >Impact of dc-dc Converters on Li-ion Batteries
【2h】

Impact of dc-dc Converters on Li-ion Batteries

机译:DC-DC转换器对锂离子电池的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work investigates the interaction between dc-dc converters on the o ne hand and batteries on the other hand. As far as battery research is c oncerned, the focus is on phenomena with relatively large time-constants ranging from seconds to hours and small current ripples. These phenomen a include State of Charge estimation and terminal voltage prediction in simulations. Conversely, the frequency at which dc-dc converters operate ranges from a few to tens or even hundreds of kHz. The current ripples originating from dc-dc converters are large compared to those used in ba ttery research and have a peak-to-peak value ranging between 0.1 to 2 ti mes the dc-value of the battery current. The goal of this research is to investigate the impact of these large, high-frequency current ripples o n the parameters of the battery. These battery parameters include the ba ttery capacity, the energy content, the State of Charge dependent charge and discharge resistance as well as the State of Charge dependent Disch arge and Regen power. In order to allow the investigation of the impact of the current ripple on the battery parameters, the battery is subjecte d to both small and large current ripples. For this purpose three differ ent 30 kW, two-quadrant, single-phase dc-dc converters are designed, two hard-switching converters and one soft-switching converter. The maximum dc-current and the switching frequency of all converters is identical a t 100 A and 8 kHz respectively. The converters have a primary inductor o f respectively 350, 220 and 105 uH. When these primary inductors are com bined with a capacitor, a conventional LC- lter is obtained. The battery is now exposed to a rather large current ripple with an 8 kHz fundament al harmonic which has an amplitude of respectively 16, 30 and 60 A. The addition of a relatively small secondary inductor is suffcient to obtain a tenfold reduction of the fundamental harmonic, while the higher harmo nics all but disappear. The obtained LCL-filter thus results in a batter y current with only a small current ripple as the battery current decrea ses at 60 dB/dec above the 2 kHz resonance frequency. The LCL- lter is d esigned such that any problems concerning the controllability and observ ability can be avoided, due to the low ratio between resonance and switc hing frequency and small secondary inductance. As the current ripple is very small, the core losses of the secondary inductor are negligible, li miting the additional losses of the LCL- lter in comparison with the LC- lter to the cable losses of the secondary inductor. At the same time, t he losses in the internal ac-resistance of the battery are avoided as th e current and voltage ripple disappear. Consequently, as both the cable losses and avoided ac-resistor losses are of the same order of magnitude and relatively small, the LCL-filter does not have a significant impact on the effciency of the dc-dc converter. The dc-dc converters with an L C-filter or LCL-filter both have a PI-controller with feedforward action for the current regulation. This current controller is the inner loop o f a cascade system with outer voltage control loop. The voltage controll er is a PI-controller used to regulate either the dc-bus voltage or the battery voltage. A special case-study is included for a fast-switching d c-dc converter with relatively large dead-time. Two 300 V , 12 kWh Li-io n batteries are subjected to the Charge-Depleting and Charge-Sustaining Cycle Life Test as described by the Battery Test Manual For Plug-In Hybr id Electric Vehicles. These tests simulate the discharging of the batter y of a Plug-in Hybrid Electric Vehicle while driving in pure EV mode and hybrid mode. Each battery is tested under identical environmental circu mstances and with the same charge and discharge pro le during one month, the only exception being that one battery is tested with a large curren t ripple, while the other battery is tested with almost no current rippl e. After each one month period, the battery's energy content, capacity a nd internal resistance are determined in order to measure any deteriatio n of these battery parameters. The results of the tests prove that the c urrent ripple doesn't have a detrimental effect on the battery parameter s. However, the current ripple causes a voltage ripple which does interf ere with the operation of the Battery Management System. As the voltage ripple causes the instantaneous cell voltage to exceed the voltage limit s while the dc-value of the cell voltage is within limits, the maximal a llowable battery voltage must be reduced. As a consequence, the useful e nergy content of the battery is reduced. It remains unclear to which ext ent the battery is damaged when the voltage ripple is allowed to raise t he cell voltage beyond the voltage limits. The double-layer capacitor mi ght provide part of the answer to this question, as it provides a low-pa ss filter for the current ripple to which the charge transfer react ion is subjected.
机译:这项工作研究了一方面的DC-DC转换器与另一方面的电池之间的相互作用。就加强电池研究而言,重点是时间常数相对较大(从几秒到几小时不等)和较小的电流纹波的现象。这些现象包括模拟中的荷电状态估计和端电压预测。相反,dc-dc转换器的工作频率范围从几千赫兹到几十千赫兹甚至数百赫兹。与电池研究中使用的电流纹波相比,由dc-dc转换器产生的电流纹波要大,其峰峰值介于电池电流的dc值的0.1至2 timm之间。这项研究的目的是研究这些大的高频电流波动对电池参数的影响。这些电池参数包括电池容量,能量含量,与充电状态有关的充放电电阻以及与充电状态有关的放电和再生功率。为了调查电流纹波对电池参数的影响,电池会同时受到小电流纹波和大电流纹波的影响。为此,设计了三个不同的30 kW,两象限,单相DC-DC转换器,两个硬开关转换器和一个软开关转换器。所有转换器的最大直流电流和开关频率分别为100 t和8 kHz。转换器具有分别为350、220和105 uH的初级电感器。当这些初级电感器与电容器结合使用时,可获得传统的LC滤波器。现在,电池暴露于具有8 kHz基本谐波且幅度分别为16、30和60 A的相当大的电流纹波。添加相对较小的次级电感器足以使基本谐波降低10倍,而更高的谐波几乎消失了。因此,当电池电流在高于2 kHz谐振频率的60 dB / dec处降低时,所获得的LCL滤波器将导致电池电流仅有很小的电流纹波。设计LCL滤波器是为了避免任何与可控性和可观察性有关的问题,因为谐振和开关频率之间的比率较低,并且次级电感较小。由于电流纹波非常小,因此次级电感器的磁芯损耗可以忽略不计,与次级电感器的电缆损耗相比,LCLter的额外损耗要比LC滤波器大。同时,由于电流和电压纹波消失,避免了电池内部电阻的损失。因此,由于电缆损耗和避免的ac电阻损耗都是相同的数量级并且相对较小,因此LCL滤波器不会对dc-dc转换器的效率产生重大影响。具有L C滤波器或LCL滤波器的DC-DC转换器均具有PI控制器,该PI控制器具有用于电流调节的前馈作用。该电流控制器是具有外部电压控制回路的级联系统的内部回路。电压控制器是一个PI控制器,用于调节直流母线电压或电池电压。包含一个特殊案例研究,用于死区时间相对较长的快速开关d c-dc转换器。按照插电式混合动力电动汽车电池测试手册中所述,对两节300 V,12 kWh锂离子电池进行了耗电和持续充电寿命测试。这些测试模拟了纯电动模式和混合动力模式下行驶时插电式混合动力汽车电池的放电情况。每个电池在一个月内都在相同的环境条件下进行了测试,并且具有相同的充电和放电性能,唯一的例外是,一个电池在测试时具有大的电流纹波,而另一个电池在测试时几乎没有电流纹波。在每个月的时间之后,确定电池的能量含量,容量和内阻,以便测量这些电池参数的任何确定性。测试结果证明电流波动对电池参数s没有不利影响。但是,电流纹波会导致电压纹波,该纹波确实与电池管理系统的运行有关。由于电压纹波导致瞬时电池电压超过电压极限s,而电池电压的dc值在极限范围内,因此必须降低可允许的最大电池电压。结果,减少了电池的有用能量含量。尚不清楚当允许电压纹波使电池电压升高到电压极限以上时,电池在何种程度上损坏。双层电容器可以为该问题提供部分答案,因为它为电荷转移反应离子所经受的电流纹波提供了一个低通滤波器。

著录项

  • 作者

    De Breucker Sven;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号