首页> 外文OA文献 >Context- and cost-aware feature selection in ultra-low-power sensor interfaces
【2h】

Context- and cost-aware feature selection in ultra-low-power sensor interfaces

机译:超低功耗传感器接口中的上下文和成本感知功能选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces the use of machine learning to improve efficiency of ultra-low-power sensor interfaces. Adaptive feature extraction circuits are assisted by hardware embedded learning to dynamically activate only most relevant features. This selection is done in a context and power cost-aware way, through modification of the C4.5 algorithm. Furthermore, context dependence of different feature sets is explained. As proof-of-principle, a Voice Activity Detector is expanded with the proposed context- and cost-dependent voice/noise classifier, resulting in an average circuit power savings of 75%, with negligible accuracy loss.
机译:本文介绍了使用机器学习来提高超低功耗传感器接口的效率。自适应特征提取电路由硬件嵌入式学习协助,以仅动态激活最相关的特征。通过修改C4.5算法,以上下文和功耗意识的方式进行选择。此外,说明了不同特征集的上下文相关性。作为原理证明,语音活动检测器通过提议的上下文和成本相关的语音/噪声分类器进行了扩展,从而平均节省了75%的电路功率,而精度损失可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号