首页> 外文期刊>Neurocomputing >Optimal resource usage in ultra-low-power sensor interfaces through context- and resource-cost-aware machine learning
【24h】

Optimal resource usage in ultra-low-power sensor interfaces through context- and resource-cost-aware machine learning

机译:通过上下文和资源成本感知的机器学习,在超低功耗传感器接口中优化资源使用

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an approach that combines machine learning and adaptive hardware to improve the efficiency of ultra-low-power sensor interfaces. Adaptive feature extraction circuits are assisted by hardware embedded training to dynamically activate only the most relevant features. This selection is done in a context- and power cost-aware manner, through modification of the C4.5 algorithm. As proof-of-principle, a Voice Activity Detector illustrates the context-dependent relevance of features, demonstrating average circuit power savings of 70%, without accuracy loss. The RECAS database developed for experimenting with this context- and dynamic resource-cost-aware training is presented and made open-source for the research community. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文介绍了一种将机器学习与自适应硬件相结合的方法,以提高超低功耗传感器接口的效率。自适应特征提取电路由硬件嵌入式培训协助,以仅动态激活最相关的特征。通过修改C4.5算法,以上下文和功耗意识的方式完成此选择。作为原理的证明,语音活动检测器说明了功能的上下文相关性,证明平均电路节电70%,而没有精度损失。展示了为试验这种上下文和动态的资源成本意识的培训而开发的RECAS数据库,并将其开放给研究社区。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号