首页> 外文OA文献 >Monitoring and modeling of citrus plant production systems by integrating hyperspectral remote sensing data and in situ data in a mathematical framework
【2h】

Monitoring and modeling of citrus plant production systems by integrating hyperspectral remote sensing data and in situ data in a mathematical framework

机译:通过在数学框架中集成高光谱遥感数据和原位数据,对柑橘类植物生产系统进行监控和建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plant production systems are governed by site management and by biotic and abiotic factors. For annual crops, many of these have been described, modeled and used as a basis for production steering. Existing biophysical production models however lack components for the correct modeling of fruit crops, such as integrated submodels for flowering and fruit growth, adaptation and carbohydrate allocation. Dynamic inputs to these models are being delivered by meteorological records and - increasingly - by remote sensing due to its high spatial and temporal resolution. Specifically hyperspectral satellite data sets offer a high added value as they are capable of detecting a large number of relevant biophysical variables, such as leaf area index, chlorophyll content, soil and crown water content, pigment ratios and biomass production. The major scientific challenge is the robust and unbiased extraction of these variables and their subsequent assimilation in production models.The first objective of this dissertation, throughout which citrus is used as a model crop, is the development of a bottom-up approach to model, at the different scales, the physiological, structural and optical processes leading to changes in signals as retrieved by hyperspectral satellites. The first step herein encompasses a description of the critical internal processes that lead to detectable changes in biochemical components with a focus on the carbohydrate flows (chapter 2). In the second step, a dorsiventral leaf model (DLM) is developed (chapter 3) capable of accurately simulating optical properties (reflectance and transmittance) of leaves with known structural properties and biochemical composition. Contrary to existing isolateral leaf models, DLM is adapted to model dorsiventral leaves, typical for dicot species such as citrus. The next step in the up-scaling process establishes the relation between optical properties at the leaf level and those at the canopy (tree crown) level. Using 3D virtualization techniques (ray-tracing), in chapter 4 a model of an existing citrus orchard was constructed and validated using field data. This virtual environment enables simulations of hyperspectral sensor measurements with high accuracy. Innovative aspects are the use of calibrated 3D tree models with an explicit description of the geometry of all leaves, twigs and stems and realistic simulation of both diffuse and direct sunlight. This virtual environment has subsequently been used as a reference for the (in)validation of different assumptions commonly made by simpler but faster algorithmic canopy reflectance models. Tested assumptions concern the shape, distribution and glossy reflections of leaves, the properties of the incident light and the row structure of orchards. This relation between leaf and tree has not only been studied using simulations, but has also been investigated using a hyperspectral time series of field measurements in a commercial citrus orchard (chapter 5). Changes in leaf, fruit and crown spectra throughout consecutive growth seasons could be explainedby interpreting within-canopy mixtures of canopy components (leaf and fruit types) in different phenological stages (flowering, fruit set and growth and leaf drop), stress (sunburn) and management actions (pruning, irrigation and harvest). The last step in the up-scaling process, from crown to satellite level, was made in chapter 7 in which the impact of shadow, viewing geometry and pixel size were investigated.The second objective in this research was the search for more robust data extraction methods that follow the inverse path: from satellite measurements to biophysical model variables. Chapter 3 introduces an improved model inversion strategy for DLM that allows leaf biochemistry (chlorophyll, carotenoids, dry matter and water) to be determined with higher accuracy. Additional statistical model building (chapter 2) reveals that spectral contact measurements can be used to determine leaf starch and soluble sugar concentrations. For measurements at the crown level, in chapter 6, a new measurement protocol is developed that enables time series collection under variable environmental conditions. This substantially improves measurement opportunities as compared to existing field protocols that demand a cloud free sky. Finally, using the virtualization techniques from chapter 4, chapter 7 finds optimal viewing angles for off-nadir satellite imagery in row plantations that minimize the interfering influence of soil and weeds on the canopy spectrum.The simulations at the different scale levels of this research (biophysical process, leaf, crown and satellite) are some of the building blocks of a framework. Within this framework, remote sensing measurements capable of monitoring the production process of fruit crops can be simulated in a reliable and physically/physiologically based way. The insights that such an approach has delivered were used to make existing data extraction methods more robust and more accurate. Some parts of this research resulted in technologies that can be employed in an operational context, such as a fast assessment of leaf biochemistry and field protocols for canopy reflectance spectra. The full bottom-up approach as envisaged here, however, requires a substantial amount of sustained fundamental and applied research.
机译:植物生产系统受场地管理以及生物和非生物因素控制。对于一年生作物,已经对其中许多进行了描述,建模并用作生产指导的基础。但是,现有的生物物理生产模型缺少正确建模水果作物的组件,例如开花和果实生长,适应性和碳水化合物分配的集成子模型。这些模型的动态输入是由气象记录提供的,并且由于其较高的时空分辨率,越来越多地通过遥感提供。特别是高光谱卫星数据集具有很高的附加值,因为它们能够检测大量相关的生物物理变量,例如叶面积指数,叶绿素含量,土壤和树冠含水量,色素比率和生物量生产。主要的科学挑战是如何可靠,无偏地提取这些变量及其随后在生产模型中的同化作用。本论文的第一个目标是通过自下而上的方法进行建模,在此过程中,将柑橘用作模型作物,在不同的尺度上,生理,结构和光学过程会导致高光谱卫星检索到的信号发生变化。本文的第一步包括对关键内部过程的描述,这些过程导致生化成分发生可检测的变化,重点是碳水化合物的流动(第2章)。在第二步中,开发了背脊叶模型(DLM)(第3章),该模型能够准确模拟具有已知结构特性和生化成分的叶片的光学特性(反射率和透射率)。与现有的孤立叶模型相反,DLM适用于建模背侧叶,典型用于双子叶植物物种,例如柑橘。放大过程的下一步是建立叶级和冠层(树冠)级光学特性之间的关系。在第4章中,使用3D虚拟化技术(光线跟踪),使用现场数据构建并验证了现有柑桔园的模型。这种虚拟环境可以高精度模拟高光谱传感器的测量。创新方面是使用经过校准的3D树模型,该模型具有对所有叶子,树枝和茎的几何形状的清晰描述,以及对漫反射和直射阳光的逼真的模拟。该虚拟环境随后已被用作(更)验证由更简单但更快速的算法树冠反射模型通常做出的不同假设的参考。经过检验的假设涉及树叶的形状,分布和光泽反射,入射光的特性以及果园的行结构。叶和树之间的这种关系不仅已通过模拟研究,而且已在商业柑桔园中使用田间测量的高光谱时间序列进行了研究(第5章)。可以通过解释不同物候阶段(开花,结实,生长和叶片下降),胁迫(晒伤)和不同物候期的冠层成分(叶片和果实类型)的冠层内部混合物来解释整个连续生长季节中叶片,果实和冠状光谱的变化。管理措施(修剪,灌溉和收获)。在升级过程中的最后一步是从冠到卫星的水平,是在第7章中进行的,其中研究了阴影,观察几何形状和像素大小的影响。此研究的第二个目标是寻求更可靠的数据提取遵循相反路径的方法:从卫星测量到生物物理模型变量。第3章介绍了一种改进的DLM模型反演策略,该策略可以更高精度地确定叶片生物化学(叶绿素,类胡萝卜素,干物质和水)。额外的统计模型建立(第2章)表明,光谱接触测量可用于确定叶片淀粉和可溶性糖浓度。对于冠冕级别的测量,在第6章中,开发了一种新的测量协议,该协议可以在可变的环境条件下收集时间序列。与要求无云天空的现有现场协议相比,这大大提高了测量机会。最后,使用第4章中的虚拟化技术,第7章为行列种植园中的离天底卫星图像找到了最佳视角,该视角将土壤和杂草对冠层光谱的干扰影响最小化。生物物理过程,叶片,树冠和卫星)是框架的一些构建块。在这个框架内可以以可靠且基于物理/生理的方式模拟能够监控水果作物生产过程的遥感测量。这种方法所提供的见解被用于使现有的数据提取方法更加健壮和准确。这项研究的某些部分导致了可以在操作环境中使用的技术,例如叶片生物化学的快速评估和冠层反射光谱的田间规程。但是,这里设想的完全自下而上的方法需要大量持续的基础和应用研究。

著录项

  • 作者

    Stuckens Jan;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号