首页> 外文OA文献 >A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD)
【2h】

A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD)

机译:一种使用Ensemble Empirical Mode Decomposition(EEMD)提取气候驱动的年际植被动态的时间序列处理工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interannual changes of vegetation are crucial in understanding ecosystem dynamics under global change. However, there is no automated tool to extract these interannual changes from remote sensing time series. To fill this gap, the Ensemble Empirical Mode Decomposition (EEMD) framework was refined and implemented to decompose time series of Normalized Difference Vegetation Index (NDVI) and reconstruct their interannual components. The performance of EEMD-based interannual NDVI detection was assessed using simulated time series, and its sensitivity to model and data parameters was determined to provide a basis for remote sensing applications. The sensitivity analysis highlighted application limitations for time series with low interannual to annual amplitude ratios and high irregularity in timing of growing seasons, as these factors have the strongest effects on the overall performance. However, within these limitations, the detected interannual components correspond well to simulated input components with respect to timing of episodes and composition of time scales. The applicability on real world NDVI time series was demonstrated by mapping the coupling between precipitation variability, interannual vegetation changes, and the El Niño Southern Oscillation and Indian Ocean Dipole phenomena for ecoregions in East and Central Africa. In most areas where precipitation was found sensitive to oceanic forcing, the EEMD detected vegetation changes matched the predicted response, except in dense forest ecosystems.
机译:植被的年际变化对于了解全球变化下的生态系统动态至关重要。但是,没有自动工具可以从遥感时间序列中提取这些年际变化。为了填补这一空白,完善并实施了集成经验模式分解(EEMD)框架,以分解归一化植被指数(NDVI)的时间序列并重建其年际分量。使用模拟的时间序列评估了基于EEMD的年度NDVI检测的性能,并确定了其对模型和数据参数的敏感性,为遥感应用提供了基础。敏感性分析突出显示了时间序列的应用限制,这些时间序列具有较低的年际与年际振幅之比,并且生长季节的时间不规则性较高,因为这些因素对整体性能影响最大。但是,在这些限制内,就情节的时间安排和时标的组成而言,检测到的年际分量与模拟输入分量非常吻合。通过绘制降水变异性,年际植被变化与东部和中部非洲生态区的厄尔尼诺南部涛动和印度洋偶极子现象之间的耦合关系,证明了在现实世界NDVI时间序列上的适用性。在大多数发现降水对海洋强迫敏感的地区,EEMD可以检测到植被变化符合预期的响应,但茂密的森林生态系统除外。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号