首页> 外文OA文献 >Efficient Dynamic Network Loading Modeling: The fixed point link transmission model
【2h】

Efficient Dynamic Network Loading Modeling: The fixed point link transmission model

机译:高效的动态网络负载建模:定点链路传输模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At the core of dynamic traffic assignment (DTA) we find the Dynamic Network Loading (DNL). The goal of the DNL is to find consistency between the propagation of traffic flows on the network and the constraints imposed by roads (e.g. maximum throughput, speed limits,...) or intersections (e.g. turning restrictions, obstructions by crossing traffic,...) by inflicting delays in the network. For solving practical DTA (or DNL) problems, a numerical discretization of the variables (traffic, space, time) is required. In our context:-Traffic: Individual vehicles are aggregated into a continuous vehicle flow represented by cumulative vehicle numbers (CVN) from which the fundamental traffic characteristics (speed, flow and density) can be derived (Newell, 1993). -Space: The link transmission model (LTM, Yperman, 2007) allows one to have discrete space intervals the size of homogeneous stretches of roads (links).-Time: The time discretization is depended on the level of the problem: for standard LTM and most other DNL'€™s typically short (less than 1 min), for route choice models and origin destination flows a lot larger (typically around 15 min).For standard numerical schemes that solve DNL sequentially through the time domain, time steps are typically small (Courant Fraichant Lewy or CFL-condition), meaning that for each link in the network the update interval of the corresponding CVN cannot be larger than the minimum time it takes to propagate information over that specific link. This is of major importance for the efficiency of LTM (and other DNL) implementations, as computational resources are almost linearly dependent on the time update frequency. In this paper, we describe a variation on the basic LTM that avoids the CFL-conditions, which as a result allows for inherently faster numerical evaluation.
机译:在动态流量分配(DTA)的核心中,我们找到了动态网络负载(DNL)。 DNL的目标是在网络上交通流量的传播与道路(例如最大吞吐量,速度限制等)或交叉路口(例如转弯限制,交叉路口的障碍物)施加的约束之间找到一致性。 。)造成网络延迟。为了解决实际的DTA(或DNL)问题,需要对变量(交通,空间,时间)进行数字离散化。在我们的上下文中:交通:将单个车辆汇总为一个连续的车辆流量,该流量由累积车辆编号(CVN)表示,从中可以得出基本的交通特征(速度,流量和密度)(Newell,1993年)。 -空间:链接传输模型(LTM,Yperman,2007)允许一个具有离散空间间隔的空间,其间隔等于道路(链接)的均匀延伸的长度。-时间:时间离散化取决于问题的程度:对于标准LTM以及其他大多数DNL的时间通常较短(不到1分钟),用于路由选择模型,而原始目的地流量要大得多(通常在15分钟左右)。对于在时域中依次求解DNL的标准数值方案,时间步长通常较小(Courant Fraichant Lewy或CFL条件),这意味着对于网络中的每个链接,相应CVN的更新间隔不能大于在该特定链接上传播信息所需的最小时间。这对于LTM(和其他DNL)实现的效率至关重要,因为计算资源几乎线性依赖于时间更新频率。在本文中,我们描述了基本LTM的一种避免CFL条件的变体,因此可以固有地加快数值评估的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号