首页> 外文OA文献 >Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature
【2h】

Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature

机译:与高斯正交相关的复正交多项式的渐近零分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we study the asymptotic behavior of a family of polynomials which are orthogonal with respect to an exponential weight on certain contours of the complex plane. The zeros of these polynomials are the nodes for complex Gaussian quadrature of an oscillatory integral on the real axis with a high order stationary point, and their limit distribution is also analyzed. We show that the zeros accumulate along a contour in the complex plane that has the S-property in an external field. In addition, the strong asymptotics of the orthogonal polynomials is obtained by applying the nonlinear Deift-Zhou steepest descent method to the corresponding Riemann-Hilbert problem.
机译:在本文中,我们研究了在复杂平面的某些轮廓上与指数权重正交的多项式族的渐近行为。这些多项式的零点是具有高阶固定点的实轴上的振荡积分的复高斯正交的节点,并且还分析了它们的极限分布。我们表明,零点沿着在外部场中具有S属性的复杂平面中的轮廓累积。此外,通过将非线性Deift-Zhou最速下降方法应用于相应的Riemann-Hilbert问题,可以获得正交多项式的强渐近性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号