首页> 外文OA文献 >SAMURAI: A batch and streaming context architecture for large-scale intelligent applications and environments
【2h】

SAMURAI: A batch and streaming context architecture for large-scale intelligent applications and environments

机译:SAMURAI:用于大规模智能应用程序和环境的批处理和流上下文架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past decade intelligent environments have grown in sophistication. Many recent paradigm shifts - such as the Internet of Things (IoT), Ambient Assisted Living (AAL), e-health and telemedicine - envision large distributed networks of intelligent devices, applications and services that are sensitive to the presence of people and responsive to their needs. Cutting edge technologies will autonomously and collectively operate on a growing volume of information arriving at ever increasing velocities to transparently and non-intrusively support users during their activities. Especially the escalating variety of information that applications have to deal with is a non-trivial concern. Making sense out of heterogeneous and pervasive streams of sensor events to anticipate and address the needs of users is a ubiquitous challenge that many interactive context-aware applications in intelligent environments frequently face. Furthermore, software solutions that continuously interpret the tasks and contexts of a variety of individuals with different needs are often faced with scalability concerns. We present SAMURAI, a batch and streaming context architecture that integrates and exposes well-known components for complex event processing, machine learning, and knowledge representation. SAMURAI builds upon key concepts of the Lambda architecture and big data enabling technologies to achieve horizontal scalability and responsive interaction with its users. Two application cases validate the feasibility and performance of our context architecture, demonstrating near-linear scalability, flexible elasticity and smooth interaction capabilities.
机译:在过去的十年中,智能环境日益成熟。最近的许多范式转换-诸如物联网(IoT),环境辅助生活(AAL),电子医疗和远程医疗-构想了大型分布式智能设备,应用程序和服务的分布式网络,这些网络对人们的存在非常敏感并能够响应他们的需求。尖端技术将在越来越多的信息上自主且集体地工作,以越来越快的速度在用户活动期间透明且非侵入式地支持用户。尤其是应用程序必须处理的不断增加的各种信息并不是一件容易的事。从传感器事件的异类和普遍流中了解并预测和满足用户需求是智能环境中许多交互式上下文感知应用程序经常面临的普遍挑战。此外,连续解释具有不同需求的各种个人的任务和上下文的软件解决方案通常面临可伸缩性问题。我们介绍了SAMURAI,这是一个批处理和流式上下文体系结构,该体系结构集成并公开了用于复杂事件处理,机器学习和知识表示的知名组件。 SAMURAI建立在Lambda架构的关键概念和大数据支持技术的基础上,以实现水平可伸缩性以及与用户的响应性交互。两个应用案例验证了我们的上下文体系结构的可行性和性能,展示了近乎线性的可伸缩性,灵活的弹性和平滑的交互功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号