首页> 外文OA文献 >Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
【2h】

Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks

机译:通过将临床和微阵列数据与贝叶斯网络相结合来预测乳腺癌的预后

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

MOTIVATION: Clinical data, such as patient history, laboratory analysis, ultrasound parameters--which are the basis of day-to-day clinical decision support--are often underused to guide the clinical management of cancer in the presence of microarray data. We propose a strategy based on Bayesian networks to treat clinical and microarray data on an equal footing. The main advantage of this probabilistic model is that it allows to integrate these data sources in several ways and that it allows to investigate and understand the model structure and parameters. Furthermore using the concept of a Markov Blanket we can identify all the variables that shield off the class variable from the influence of the remaining network. Therefore Bayesian networks automatically perform feature selection by identifying the (in)dependency relationships with the class variable. RESULTS: We evaluated three methods for integrating clinical and microarray data: decision integration, partial integration and full integration and used them to classify publicly available data on breast cancer patients into a poor and a good prognosis group. The partial integration method is most promising and has an independent test set area under the ROC curve of 0.845. After choosing an operating point the classification performance is better than frequently used indices.
机译:动机:临床数据,例如患者病史,实验室分析,超声参数-这些数据是日常临床决策支持的基础-在存在微阵列数据的情况下,常常不足以指导癌症的临床管理。我们提出一种基于贝叶斯网络的策略,以平等对待临床和微阵列数据。此概率模型的主要优点是,它允许以多种方式集成这些数据源,并且可以调查和了解模型的结构和参数。此外,使用马尔可夫毯子的概念,我们可以确定所有使类变量免受其余网络影响的变量。因此,贝叶斯网络通过识别与类变量的(非)依赖关系自动执行特征选择。结果:我们评估了整合临床和微阵列数据的三种方法:决策整合,部分整合和完全整合,并使用它们将可公开获得的乳腺癌患者数据分类为不良和良好的预后组。部分积分法是最有前途的,并且在ROC曲线下0.845下具有独立的测试集区域。选择一个工作点后,分类性能要优于常用指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号