首页> 外文OA文献 >Alleviating the sparsity problem in collaborative filtering by using an adapted distance and a graph-based method
【2h】

Alleviating the sparsity problem in collaborative filtering by using an adapted distance and a graph-based method

机译:通过使用自适应距离和基于图的方法缓解协作过滤中的稀疏性问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Collaborative filtering (CF) is the process of predicting a user’s interest in various items, such as books or movies, based on taste information, typically expressed in the form of item ratings, from many other users. One of the key issues in collaborative filtering is how to deal with data sparsity; most users rate only a small number of items.This paper’s first contribution is a distance measure. This distance measure is probability-based and is adapted for use with sparse data; it can be used with for instance a nearest neighbor method, or in graph-based methods to label the edges of the graph. Our second contribution is a novel probabilistic graph-based collaborative filtering algorithm called PGBCF that employs that distance. By propagating probabilistic predictions through the user graph, PGBCF does not only use ratings of direct neighbors, but can also exploit the information available for indirect neighbors. Experiments show that both the adapted distance measure and the graph-based collaborative filtering algorithm lead to more accurate predictions.
机译:协作过滤(CF)是一种过程,该过程根据来自许多其他用户的口味信息(通常以物品等级的形式表示)来预测用户对书籍或电影等各种物品的兴趣。协作过滤的关键问题之一是如何处理数据稀疏性。大多数用户只对少量商品进行评分。本文的第一个贡献是距离测量。此距离量度基于概率,适用于稀疏数据。例如,它可以与最近邻方法一起使用,或者在基于图的方法中用于标记图的边缘。我们的第二个贡献是一种新颖的基于概率图的协作过滤算法,称为PGBCF,它采用了该距离。通过通过用户图传播概率预测,PGBCF不仅使用直接邻居的等级,而且还可以利用可用于间接邻居的信息。实验表明,自适应距离测度和基于图的协同过滤算法均可导致更准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号