首页> 外文OA文献 >Automated misfire diagnosis in engines using torsional vibration and block rotation
【2h】

Automated misfire diagnosis in engines using torsional vibration and block rotation

机译:利用扭转振动和缸体旋转自动诊断发动机失火

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Even though a lot of research has gone into diagnosing misfire in IC engines, most approaches use torsional vibration of the crankshaft, and only a few use the rocking motion (roll) of the engine block. Additionally, misfire diagnosis normally requires an expert to interpret the analysis results from measured vibration signals. Artificial Neural Networks (ANNs) are potential tools for the automated misfire diagnosis of IC engines, as they can learn the patterns corresponding to various faults. This paper proposes an ANN-based automated diagnostic system which combines torsional vibration and rotation of the block for more robust misfire diagnosis. A critical issue with ANN applications is the network training, and it is improbable and/or uneconomical to expect to experience a sufficient number of different faults, or generate them in seeded tests, to obtain sufficient experimental results for the network training. Therefore, new simulation models, which can simulate combustion faults in engines, were developed. The simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore the proposed misfire diagnostic system can in principle be adapted for any engine. During the building process of the models, based on a particular engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and parameters of engine mounts, were first measured and calculated. A series of experiments were then carried out to capture the vibration signals for both normal condition and with a range of faults. The simulation models were updated and evaluated by the experimental results. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The automated diagnostic system comprises three stages: misfire detection, misfire localization and severity identification. Multi-layer Perceptron (MLP) and Probabilistic Neural Networks were applied in the different stages. The final results have shown that the diagnostic system can efficiently diagnose different misfire conditions, including location and severity.
机译:尽管已经对诊断IC发动机失火进行了大量研究,但大多数方法都是使用曲轴的扭转振动,而只有很少的方法使用发动机缸体的摇摆运动(滚动)。另外,失火诊断通常需要专家根据测得的振动信号来解释分析结果。人工神经网络(ANN)是用于IC发动机自动失火诊断的潜在工具,因为它们可以学习与各种故障相对应的模式。本文提出了一种基于ANN的自动诊断系统,该系统结合了扭转振动和块的旋转来进行更可靠的失火诊断。 ANN应用程序的一个关键问题是网络培训,期望经历足够数量的不同故障或在种子测试中生成它们,以获得足够的实验结果进行网络培训是不可能和/或不经济的。因此,开发了可以模拟发动机燃烧故障的新模拟模型。仿真模型基于IC发动机的热力学和机械原理,因此建议的失火诊断系统原则上可适用于任何发动机。在模型的构建过程中,基于特定的发动机,首先要测量和计算一些机械和物理参数,例如发动机零件的惯性和发动机支座的参数。然后进行了一系列实验,以捕获正常状态和一系列故障的振动信号。通过实验结果对仿真模型进行了更新和评估。在对实验和模拟信号进行信号处理之后,选择了最佳功能作为ANN网络的输入。自动诊断系统包括三个阶段:失火检测,失火定位和严重性识别。多层感知器(MLP)和概率神经网络已应用于不同阶段。最终结果表明,该诊断系统可以有效地诊断不同的失火状况,包括位置和严重性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号