首页> 外文OA文献 >Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries
【2h】

Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries

机译:具有不同表面化学性质的Cd / Se半导体量子点的遗传毒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure-activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD.
机译:量子点(QD)具有独特的电子和光学特性,促进了生物技术的发展。但是,我们对毒理学结构-活性关系的理解仍然有限。这项研究旨在通过评估QD与人类淋巴母细胞TK6细胞的负(羧基),中性(十六烷基胺; HDA)或正(胺)聚合物涂层之间的相互作用来确定变化的纳米材料表面化学的生物学影响。根据QD的理化特性,通过光学和电子显微镜对细胞摄取进行定量。使用微核测定(染色体严重损伤)和HPRT正向突变测定(点诱变)评估细胞毒性并表征遗传毒性。还探讨了细胞损伤机制,重点是氧化应激和线粒体损伤。发现细胞摄取,细胞毒性和遗传毒性取决于QD表面化学。羧基-量子点显示最小的团聚体大小和最大的细胞摄取,这与剂量依赖性细胞毒性和基因毒性的增加有关。胺-QD引起的细胞损伤最小,而HDA-QD促进了细胞死亡和遗传毒性的实质性诱导。然而,HDA-QD未被细胞内在化,它们造成的损害最可能是由于QD溶解引起的游离镉释放。氧化应激和诱导的线粒体活性氧仅与量子点诱导的细胞毒性和遗传毒性部分相关,因此并不是唯一重要的机制。因此,胶体稳定性,纳米颗粒(NP)表面化学,细胞摄取水平和NP的固有特性是影响QD诱导的基因毒性的关键参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号