首页> 外文OA文献 >A new model construction by making a detour via intuitionistic theories II: Interpretability lower bound of Feferman's explicit mathematics T0
【2h】

A new model construction by making a detour via intuitionistic theories II: Interpretability lower bound of Feferman's explicit mathematics T0

机译:通过直觉理论绕道而行的新模型构建II:费弗曼显式数学T0的可解释性下界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We partially solve a long-standing problem in the proof theory of explicit mathematics or the proof theory in general. Namely, we give a lower bound of Feferman’s system T0 of explicit mathematics (but only when formulated on classical logic) with a concrete interpretat ion of the subsystem Σ12-AC+ (BI) of second order arithmetic inside T0. Whereas a lower bound proof in the sense of proof-theoretic reducibility or of ordinalanalysis was already given in 80s, the lower bound in the sense of interpretability we give here is new. We apply the new interpretation method developed by the author and Zumbrunnen (2015), which can be seen as the third kind of model construction method for classical theories, after Cohen’s forcing and Krivine’s classical realizability. It gives us an interpretation between classical theories, by composing interpretations between intuitionistic theories.
机译:我们在显式数学的证明理论或一般的证明理论中部分解决了一个长期存在的问题。也就是说,我们给出了Feferman显式数学系统T0的下界(但仅当根据经典逻辑制定时),并给出了T0内部二阶算术子系统Σ12-AC+(BI)的具体解释。尽管在80年代就已经给出了证明理论还原性或序数分析意义上的下界证明,但是我们在此处给出的解释性意义上的下界是新的。我们采用了作者和Zumbrunnen(2015)开发的新解释方法,可以将其视为继Cohen的强迫和Krivine的经典可实现性之后的第三种经典理论模型构建方法。它通过构成直觉主义理论之间的解释,为我们提供了古典理论之间的解释。

著录项

  • 作者

    Sato Kentaro;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号