首页> 外文OA文献 >A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π1-equivalent to KP
【2h】

A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π1-equivalent to KP

机译:通过直觉理论绕道而行的新模型构造I:无选择的操作集理论1-1等效于KP

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a version of operational set theory, OST−, without a choice operation, which has a machinery for Δ0Δ0 separation based on truth functions and the separation operator, and a new kind of applicative set theory, so-called weak explicit set theory WEST, based on Gödel operations. We show that both the theories and Kripke–Platek set theory KPKP with infinity are pairwise Π1Π1 equivalent. We also show analogous assertions for subtheories with ∈-induction restricted in various ways and for supertheories extended by powerset, beta, limit and Mahlo operations. Whereas the upper bound is given by a refinement of inductive definition in KPKP, the lower bound is by a combination, in a specific way, of realisability, (intuitionistic) forcing and negative interpretations. Thus, despite interpretability between classical theories, we make “a detour via intuitionistic theories”. The combined interpretation, seen as a model construction in the sense of Visser's miniature model theory, is a new way of construction for classical theories and could be said the third kind of model construction ever used which is non-trivial on the logical connective level, after generic extension à la Cohen and Krivine's classical realisability model.
机译:我们介绍了一种没有选择操作的运算集理论OST−,它具有基于真函数和分离算符的Δ0Δ0分离机制,以及一种新型的应用集理论,即所谓的弱显式集理论WEST ,基于Gödel运营。我们证明,无穷大理论和Kripke-Platek集理论KPKP都是成对的Π1Π1等效项。我们还展示了对以各种方式限制ε-归纳的子理论以及通过幂集,β,极限和Mahlo运算扩展的超理论的类似断言。上限由KPKP中归纳定义的细化给出,而下限由可实现性,(直觉)强迫和否定解释以特定方式组合而成。因此,尽管古典理论之间具有可解释性,但我们还是“通过直觉主义理论绕道而行”。从维塞尔的微型模型理论的角度来看,组合解释被视为模型构建,是古典理论的一种新构建方法,可以说是有史以来使用的第三种模型构建,在逻辑连接层次上是不平凡的,经过通用扩展àla Cohen和Krivine的经典可实现性模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号