首页> 外文OA文献 >Fuel Starvation: irreversible degradation mechanisms in PEM Fuel Cells
【2h】

Fuel Starvation: irreversible degradation mechanisms in PEM Fuel Cells

机译:燃料匮乏:PEM燃料电池中不可逆的降解机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation.
机译:PEM燃料电池在阳极和阴极都处于非常苛刻的条件下运行。 PEM燃料电池的故障模式和机制包括与热,化学或机械问题有关的故障模式和机制,可能会限制稳定性,功率和寿命。在这项工作中,检查了燃料不足的情况。阳极电势可以上升到与水的氧化相容的水平。如果没有水,碳载体的氧化将加速催化剂的烧结。选择用于PEM燃料电池原位和异位分析的诊断方法,以便更好地对电池的不可逆变化进行分类。发现电化学阻抗谱(EIS)有助于识别燃料电池的溢流条件和与质量传输限制/反应物饥饿和质子传导率降低有关的膜脱水。此外,这表明水电解可能在阳极发生。通过扫描电子显微镜检查的膜催化剂和气体扩散层的截面表明,由于氢缺乏期间发生的反应,电极厚度减小。发现催化剂颗粒向外迁移并位于碳背衬上。根据氟化物释放的机理分析了燃料电池环境中的膜降解,该机理被认为是膜降解的早期预测因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号