首页> 外文OA文献 >Stability of the partitioned inverse method for parallel solution of sparse triangular systems
【2h】

Stability of the partitioned inverse method for parallel solution of sparse triangular systems

机译:稀疏三角系统并行解的分区逆方法的稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several authors have recently considered a parallel method for solving sparse triangular systems with many right-hand sides. The method employs a partition into sparse factors of the product form of the inverse of the coefficient matrix. It is shown here that while the method can be unstable, stability is guaranteed if a certain scalar that depends on the matrix and the partition is small and that this scalar is small when the matrix is well conditioned. Moreover, when the partition is chosen so that the factors have the same sparsity structure as the coefficient matrix, the backward error matrix can be taken to be sparse.
机译:最近,有几位作者考虑了一种并行方法来求解具有许多右侧的稀疏三角系统。该方法采用划分成系数矩阵逆的乘积形式的稀疏因子。此处显示,虽然该方法可能不稳定,但是如果依赖于矩阵和分区的某个标量较小,并且当矩阵条件良好时该标量较小,则可以保证稳定性。此外,当选择分区以使因子具有与系数矩阵相同的稀疏性结构时,可以认为后向误差矩阵是稀疏的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号