首页> 外文OA文献 >An ontological approach to quantify distance between hereditary disease modules on the interactome.
【2h】

An ontological approach to quantify distance between hereditary disease modules on the interactome.

机译:一种用于量化交互组上遗传疾病模块之间距离的本体方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For about 30% of hereditary diseases no disease gene is currently known. Very little if anything at all is known about the molecular basis of these orphan diseases. In this Thesis I present an ontological method that accurately quantifies similarity between heritable diseases modules in the interactome, which can be used to help pinpoint the location of the perturbation causing the orphan diseases . This method, based on the MeSH ontologies, effectively brings together the existing information about diseases that is scattered across the vast corpus of biomedical literature. I prove that sets of MeSH terms provide a highly descriptive representation of heritable disease and that the structure of MeSH provides a natural way of combining individual MeSH vocabularies. I also show that the measure can be used effectively in the prediction of candidate disease genes. The effective use of the vast information available allows the measure to be applicable for orphan diseases: the measure can help pinpoint the location of their molecular perturbations. More generally, the measure enables the transfer of knowledge between similar diseases, providing hypotheses for disease genes and even suggestions for drug repositioning. I have validated the method through a machine learning approach to show the predictive power of the measure. Further to the numerical evaluation, I have curated a highly illustrative set of examples for the literature showcasing the accuracy of the method. Lastly, I show that the measure is effective for the prediction of candidate disease genes. I have developed a web application to query more than 28.5 million relationships between 7,574 hereditary diseases (96% of OMIM) based on the similarity measure. During my PhD I have also developed GOssTo and GOssToWeb a console and web application to compute semantic similarities in the Gene Ontology. GOssTo was integrated into a disease gene prediction pipeline that showed the advantages of using functional similarities to improve the predictions.
机译:对于大约30%的遗传性疾病,目前尚无疾病基因。关于这些孤儿疾病的分子基础了解甚少。在本论文中,我提出了一种本体论方法,该方法可以准确地量化交互组中遗传性疾病模块之间的相似性,该方法可用于帮助查明引起孤儿疾病的摄动的位置。这种基于MeSH本体论的方法有效地将散布在庞大的生物医学文献中的有关疾病的现有信息整合在一起。我证明,MeSH术语集提供了可遗传性疾病的高度描述性表示,并且MeSH的结构提供了组合单个MeSH词汇的自然方式。我还表明该措施可以有效地用于候选疾病基因的预测。有效利用可用的大量信息使该措施适用于孤儿疾病:该措施可帮助查明其分子扰动的位置。更广泛地说,该措施能够在类似疾病之间传递知识,为疾病基因提供假设,甚至为药物重新定位提供建议。我已经通过机器学习方法验证了该方法,以显示该措施的预测能力。除数值评估外,我还为文献整理了一组高度说明性的示例,展示了该方法的准确性。最后,我证明了该措施对于预测候选疾病基因是有效的。我已经开发了一个网络应用程序,用于基于相似性度量来查询7574种遗传性疾病(占OMIM的96%)之间的2850万种关系。在攻读博士学位期间,我还开发了GOssTo和GOssToWeb控制台和Web应用程序,用于计算Gene Ontology中的语义相似性。 GOssTo已集成到疾病基因预测管道中,该管道显示了使用功能相似性来改进预测的优势。

著录项

  • 作者

    Caniza Vierci Horacio;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号