首页> 外文OA文献 >Artificial neural network approach for electric load forecasting in power distribution company/ M. A. Hambali ...et al.
【2h】

Artificial neural network approach for electric load forecasting in power distribution company/ M. A. Hambali ...et al.

机译:配电公司/ M. A. Hambali ... 等的人工神经网络方法进行电力负荷预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, there have been extensive researches seeking the best methods of improving the load forecast accuracy. Many of these methods are statistical based methods which include time series, regression, Box-Jenkins model, exponential smoothing and so on. However, the statistical models offer limpidity in data interpretation and sensible accuracy in load forecasting but characterized by the problems of limited modeling and hefty computational effort which makes them less desirable than the intelligent techniques. Recently, Artificial Intelligence (AI) has been a better substitute. Among the AI methods, artificial neural networks (ANNs) have got some attention from a lot of researchers in this area due to its flexibility in data modeling. In this paper, ANN for electric load forecasting is proposed. The historical data were collected for three months from Yola power transmission company office along Numan road Jimeta/Yola, Adamawa State, Nigeria. Researchers then performed data preprocessing on the data. Afterwards, data mining algorithms were applied in order to forecast electric load. In doing this, two ANN algorithms (MLP and RBF) and SMO algorithm were employed and compared. The results were then interpreted; the obtained models were analyzed to determine the pattern in load forecasting model. The experimental analysis was performed on WEKA version 3.6.10 environment. Also, 10-fold cross validation test option was used to carry out the experiments. Results obtained showed that multilayer-Perceptron model (MLP) gives an accuracy of 86% with Mean Absolute error (MAE) of 0.016, Radial basis function (RBF) had an accuracy of 76% with MAE of 0.030 and Sequential Minimal Optimization (SMO) accuracy of 85% with MAE of 0.090 which indicated a promising level of electric load forecast.
机译:近年来,已经进行了广泛的研究,以寻求提高负荷预测准确性的最佳方法。这些方法很多都是基于统计的方法,包括时间序列,回归,Box-Jenkins模型,指数平滑等。然而,统计模型在数据解释中提供了简洁性,并且在负荷预测中提供了合理的准确性,但是其特征在于建模受限和计算量大的问题,这使得它们不如智能技术那么受欢迎。最近,人工智能(AI)已经成为更好的替代品。在AI方法中,由于其在数据建模方面的灵活性,因此人工神经网络(ANN)受到了该领域许多研究人员的关注。本文提出了一种用于电力负荷预测的人工神经网络。历史数据是从位于尼日利亚阿达玛瓦州Jimman / Yola的Numan路上的Yola输电公司办公室收集的三个月数据。研究人员随后对数据进行了数据预处理。之后,应用数据挖掘算法来预测电力负荷。在此过程中,使用并比较了两种ANN算法(MLP和RBF)和SMO算法。然后解释结果;分析获得的模型以确定负荷预测模型中的模式。实验分析是在WEKA 3.6.10版环境下进行的。另外,使用10倍交叉验证测试选项进行实验。所得结果表明,多层感知器模型(MLP)的准确度为86%,平均绝对误差(MAE)为0.016,径向基函数(RBF)的准确度为76%,MAE为0.030,顺序最小优化(SMO)精确度为85%,MAE为0.090,表明电力负荷预测前景良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号