首页> 外文OA文献 >Temperature Prediction Model for Horizontal Well with Multiple Fractures in Shale Reservoir
【2h】

Temperature Prediction Model for Horizontal Well with Multiple Fractures in Shale Reservoir

机译:页岩储层多裂缝水平井温度预测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fracture diagnostics is a key technology for well performance prediction of a horizontal well in a shale reservoir. The combination of multiple fracture diagnostic techniques gives reliable results, and temperature data has potential to provide more reliability on the results. In this work, we show an application of a temperature prediction model for a horizontal well with multiple hydraulic fractures in order to investigate the possibility of evaluating reservoir and hydraulic fracture parameters using temperature data. The model consists of wellbore model and reservoir model.The wellbore model was formulated based on mass, momentum and energy balance. The reservoir flow model was solved by a numerical reservoir simulation, and the reservoir thermal model was formulated by transient energy balance equation considering viscous dissipation heating and temperature variation caused by fluid expansion besides heat conduction and convection. The reservoir flow and reservoir thermal model were coupled with the wellbore model to predict temperature distribution in a horizontal well considering boundary conditions at the contact of reservoir and wellbore. In the reservoir system, primary hydraulic fractures which are transverse to the horizontal well were modeled with thin grid cells explicitly, and the hydraulically-induced fracture network around the horizontal well was modeled as higher permeable zone to unstimulated matrix zone. The reservoir grids between two primary fractures were logarithmically spaced in order to capture transient flow behavior. We applied the model to synthetic examples: horizontal well with identical five fractures and with different five fractures. The results show two fundamental mechanisms: heat conduction between formation and wellbore fluid at non-perforated zone, and wellbore fluid mixing effect at each fracture. The synthetic example with identical fractures shows that fracture locations affect wellbore temperature distribution because of fluid mixing effect between reservoir inflow and wellbore fluid. And also, the synthetic example with different fractures shows that the fracture heterogeneity causes different magnitude of temperature change due to inflow variation per fracture. In addition, the model was applied to synthetic examples without network fracture region in order to find the effects by the network. It reveals that under constant rate condition, network fracture masks large temperature change due to small pressure change at the contact between fracture and formation, and that under constant BHP condition, network fracture augments temperature change with the increase of flow rate in wellbore and inflow rate from reservoir.Sensitivity studies were performed on temperature distribution to identify influential parameters out of the reservoir and hydraulic fracture parameters including reservoir porosity, reservoir permeability, fracture half-length, fracture height, fracture permeability, fracture porosity, fracture network parameters, and fracture interference between multiple clusters. In this work, in order to find contributions by a target fracture, temperature change sensitivity is evaluated. Single fracture case reveals that fracture permeability, network fracture parameters and fracture geometries are primary influential parameters on temperature change at the fracture location. And also, multiple fractures case shows that temperature change is augmented with the increase of fracture geometry and is decreased with the increase of fracture permeability. These results show the possibility of using temperature to determine these sensitive parameters, and also the quantified parameter sensitivities provide better understandings of the temperature behavior of horizontal well with multiple fractures.
机译:裂缝诊断是页岩储层水平井预测性能的关键技术。多种断裂诊断技术的组合可提供可靠的结果,而温度数据​​有潜力为结果提供更高的可靠性。在这项工作中,我们展示了温度预测模型在具有多个水力压裂的水平井中的应用,以便研究使用温度数据评估储层和水力压裂参数的可能性。该模型由井眼模型和储层模型组成。井眼模型是根据质量,动量和能量平衡建立的。通过数值油藏模拟求解油藏流动模型,并通过瞬态能量平衡方程式建立油藏热模型,其中考虑了除了热传导和对流以外的粘性耗散加热和流体膨胀引起的温度变化。考虑到储层与井眼接触处的边界条件,将储层流动和储层热模型与井眼模型相结合,以预测水平井中的温度分布。在储层系统中,水平井横向的主要水力压裂用薄网格单元显式地模拟,水平井周围的水力压裂网络被模拟为高渗透性区域到非增产基质区域。对数分隔两个主要裂缝之间的储层网格,以捕获瞬态流动行为。我们将该模型应用于综合实例:水平井中有五个裂缝,而裂缝中有五个不同。结果表明了两个基本机理:在非射孔区地层与井眼流体之间的热传导,以及在每个裂缝处的井眼流体​​混合作用。具有相同裂缝的合成示例表明,由于储层入流与井眼流体之间的流体混合作用,裂缝位置会影响井眼温度分布。而且,具有不同裂缝的综合示例表明,由于每条裂缝的流入量变化,裂缝的非均质性会导致不同程度的温度变化。此外,将该模型应用于没有网络断裂区域的合成示例,以便通过网络找到效果。结果表明,在恒定速率条件下,由于裂缝和地层之间的压力变化较小,网络裂缝掩盖了较大的温度变化;而在恒定BHP条件下,网络裂缝随着井眼流量和入流量的增加而增大了温度变化。对温度分布进行敏感性研究,以识别影响储层的参数和水力压裂参数,包括储层孔隙度,储层渗透率,裂缝半长,裂缝高度,裂缝渗透率,裂缝孔隙率,裂缝网络参数和裂缝干扰在多个集群之间。在这项工作中,为了找到目标断裂的贡献,对温度变化敏感性进行了评估。单个裂缝案例表明,裂缝渗透率,网络裂缝参数和裂缝几何形状是影响裂缝位置温度变化的主要影响参数。而且,多裂缝案例表明,温度变化随着裂缝几何形状的增加而增加,而随着裂缝渗透率的增加而减小。这些结果表明使用温度来确定这些敏感参数的可能性,而且量化的参数敏感度还可以更好地理解具有多个裂缝的水平井的温度行为。

著录项

  • 作者

    Yoshida Nozomu;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号