首页> 外文OA文献 >Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system
【2h】

Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system

机译:使用基于视觉的相对导航系统进行自动空中加油的估计算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new impetus to develop autonomous aerial refueling has arisen out of the growingdemand to expand the capabilities of unmanned aerial vehicles (UAVs). Withautonomous aerial refueling, UAVs can retain the advantages of being small, inexpensive,and expendable, while offering superior range and loiter-time capabilities.VisNav, a vision based sensor, offers the accuracy and reliability needed in order toprovide relative navigation information for autonomous probe and drogue aerial refuelingfor UAVs. This thesis develops a Kalman filter to be used in combination withthe VisNav sensor to improve the quality of the relative navigation solution duringautonomous probe and drogue refueling. The performance of the Kalman filter is examinedin a closed-loop autonomous aerial refueling simulation which includes modelsof the receiver aircraft, VisNav sensor, Reference Observer-based Tracking Controller(ROTC), and atmospheric turbulence. The Kalman filter is tuned and evaluatedfor four aerial refueling scenarios which simulate docking behavior in the absence ofturbulence, and with light, moderate, and severe turbulence intensity. The dockingscenarios demonstrate that, for a sample rate of 100 Hz, the tuning and performanceof the filter do not depend on the intensity of the turbulence, and the Kalman filterimproves the relative navigation solution from VisNav by as much as 50% duringthe early stages of the docking maneuver. For the aerial refueling scenarios modeledin this thesis, the addition of the Kalman filter to the VisNav/ROTC structure resultedin a small improvement in the docking accuracy and precision. The Kalmanfilter did not, however, significantly improve the probability of a successful dockingin turbulence for the simulated aerial refueling scenarios.
机译:扩大无人驾驶飞机(UAV)的需求日益增长,这为发展自动空中加油提供了新动力。借助自动空中加油功能,无人机可以保持体积小,价格便宜和易消耗的优势,同时提供出色的射程和游荡时间能力。基于视觉的传感器VisNav提供所需的准确性和可靠性,以便为自主探测器提供相对导航信息无人机的锥套空中加油本文开发了与VisNav传感器结合使用的卡尔曼滤波器,以提高自动探测和锥管加油过程中相对导航解决方案的质量。在闭环自主空中加油仿真中检查了卡尔曼滤波器的性能,该仿真包括接收器飞机,VisNav传感器,基于参考观察者的跟踪控制器(ROTC)和大气湍流的模型。卡尔曼滤波器针对四种空中加油场景进行了调谐和评估,这些场景模拟了在没有湍流,轻,中,严重湍流强度的情况下对接行为。对接方案表明,对于100 Hz的采样率,滤波器的调谐和性能不依赖于湍流的强度,而Kalman滤波器在VisNav的早期阶段将VisNav的相对导航解决方案提高了50%。对接操作。对于本文中建模的空中加油场景,在VisNav / ROTC结构中增加了卡尔曼滤波器后,对接精度和精度都有了小幅提高。但是,对于模拟的空中加油场景,卡尔曼滤波器并未显着提高成功对接湍流的可能性。

著录项

  • 作者

    Bowers Roshawn Elizabeth;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号