首页> 外文OA文献 >Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors
【2h】

Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors

机译:使用温度纳米传感器的微通道中纳米流体强迫对流换热的实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Experiments were performed to study forced convective heat transfer of de-ionized water (DI water) and aqueous nanofluids flowing in a microchannel. An array of temperature nanosensors, called ?Thin Film Thermocouples (TFT)?, was utilized for performing the experimental measurements. TFT arrays were designed (which included design of photomask layout), microfabricated, packaged and assembled for testing with the experimental apparatus. Heat removal rates from the heated surface to the different testing fluids were measured by varying the coolant flow rates, wall temperatures, nanoparticle material, nanoparticle morphology (shape and nanoparticle size) as well as mass concentrations of nanoparticles in the coolants.Anomalous thermal behavior was observed in the forced convective heat transfer experiments. Precipitation of the nanoparticles on the heat exchanging surface was monitored using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray spectroscopy (EDX). Isolated precipitation of nanoparticles is expected to cause formation of ?nanofins? leading to enhancement of surface area and thus resulting in enhanced convective heat transfer to the nanofluid coolants. However, excessive precipitation (caused due to the agglomeration of the nanoparticles in the nanofluid coolant) causes scaling (fouling) of the heat exchanging surfaces and thus results in degradation of convective heat transfer. This study shows that the surface morphology plays a crucial role in determining the efficacy of convective heat transfer involving suspensions of nanoparticles in coolants (or nanofluids).Flow visualization and quantitative estimation of near-wall temperature profiles were performed using quantum dots and fluorescent dyes. This non-contact measurement technique for temperature and flow profiles in microchannels using quantum dots is expected to make pioneering contribution to the field of experimental flow visualization and to the study of micro/nano-scale heat transfer phenomena, particularly for forced convective heat transfer of various coolants, including nanofluids.Logical extensions of this study were explored and future directions were proposed. Preliminary experiments to demonstrate feasibility showed significant enhancement in the flow boiling heat flux values for nanofluids compared to that of pure solvent (DIW). Based on the novel phenomena observed in this study several other topics for future research were suggested, such as, using Surface Plasmon Resonance (SPR) platforms to monitor precipitation of nanoparticles on microchannel surfaces in real time (e.g., for generating surface isotherms).
机译:进行实验以研究去离子水(DI水)和在微通道中流动的水性纳米流体的强制对流换热。使用称为“薄膜热电偶(TFT)”的温度纳米传感器阵列进行实验测量。设计TFT阵列(包括光掩模布局的设计),进行微加工,封装和组装,以使用实验设备进行测试。通过改变冷却液流速,壁温,纳米颗粒材料,纳米颗粒形态(形状和纳米颗粒尺寸)以及冷却剂中纳米颗粒的质量浓度来测量从被加热表面到不同测试流体的散热速率。在强制对流换热实验中观察到。使用扫描电子显微镜(SEM)和能量色散X射线光谱(EDX)监控纳米颗粒在热交换表面的沉淀。纳米颗粒的孤立沉淀预计会导致“ nanofins”的形成。导致表面积的增加,并因此导致对流热传递至纳米流体冷却剂。然而,过多的沉淀(由于纳米流体冷却剂中的纳米颗粒的团聚引起)导致热交换表面的结垢(结垢),并因此导致对流热传递的劣化。这项研究表明,表面形态在确定对流传热的有效性方面起着至关重要的作用,其中涉及纳米粒子在冷却剂(或纳米流体)中的悬浮液。使用量子点和荧光染料进行流动可视化和近壁温度分布的定量估计。这种使用量子点的微通道温度和流量分布的非接触式测量技术有望为实验流量可视化领域和微/纳米级传热现象的研究做出开创性贡献,特别是对于强迫对流换热的研究。研究了该研究的逻辑扩展并提出了未来的发展方向。初步实验证明了可行性,与纯溶剂(DIW)相比,纳米流体的流动沸腾热通量值显着提高。基于本研究中观察到的新现象,提出了其他一些主题以供将来研究,例如使用表面等离子体共振(SPR)平台实时监测微通道表面上纳米颗粒的沉淀(例如用于产生表面等温线)。

著录项

  • 作者

    Yu Jiwon 1982-;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号