首页> 外文OA文献 >Nonparametric estimation of econometric models with categorical variables
【2h】

Nonparametric estimation of econometric models with categorical variables

机译:具有分类变量的计量经济学模型的非参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation I investigate several topics in the field of nonparametric econometrics.In chapter II, we consider the problem of estimating a nonparametric regressionmodel with only categorical regressors. We investigate the theoretical propertiesof least squares cross-validated smoothing parameter selection, establish the rate ofconvergence (to zero) of the smoothing parameters for relevant regressors, and showthat there is a high probability that the smoothing parameters for irrelevant regressorsconverge to their upper bound values thereby smoothing out the irrelevant regressors.In chapter III, we consider the problem of estimating a joint distribution definedover a set of discrete variables. We use a smoothing kernel estimator to estimate thejoint distribution, allowing for the case in which some of the discrete variables areuniformly distributed, and explicitly address the vector-valued smoothing parametercase due to its practical relevance. We show that the cross-validated smoothingparameters differ in their asymptotic behavior depending on whether a variable isuniformly distributed or not.In chapter IV, we consider a k-n-n estimation of regression function with k selectedby a cross validation method. We consider both the local constant and local linear cases. In both cases, the convergence rate of of the cross validated k is established.In chapter V, we consider nonparametric estimation of regression functions withmixed categorical and continuous data. The smoothing parameters in the model areselected by a cross-validation method. The uniform convergence rate of the kernelregression function estimator function with weakly dependent data is derived.
机译:本文主要研究非参数计量经济学领域中的若干主题。第二章,我们讨论了仅具有分类回归变量的非参数回归模型的估计问题。我们研究了最小二乘交叉验证的平滑参数选择的理论特性,确定了相关回归变量的平滑参数收敛速度(为零),并表明不相关回归变量的平滑参数收敛到其上限值的可能性很高。在第三章中,我们考虑了估计在一组离散变量上定义的联合分布的问题。我们使用平滑核估计器来估计联合分布,从而考虑到某些离散变量均匀分布的情况,并由于其实际相关性而显式地解决了矢量值平滑参数的情况。我们证明了交叉验证的平滑参数的渐近行为根据变量是否均匀分布而有所不同。在第四章​​中,我们考虑了通过交叉验证方法选择的k的回归函数的k-n-n估计。我们同时考虑局部常数和局部线性情况。在第五种情况下,我们考虑了混合分类和连续数据的回归函数的非参数估计。通过交叉验证方法选择模型中的平滑参数。推导了具有弱相关数据的核回归函数估计函数的一致收敛速度。

著录项

  • 作者

    Ouyang Desheng;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号