首页> 外文OA文献 >Asymptotic, Algorithmic and Geometric Aspects of Groups Generated by Automata
【2h】

Asymptotic, Algorithmic and Geometric Aspects of Groups Generated by Automata

机译:由自动机生成的组的渐近,算法和几何方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation is devoted to various aspects of groups generated by automata. Westudy particular classes and examples of such groups from different points of view. Itconsists of four main parts.In the first part we study Sushchansky p-groups introduced in 1979 bySushchansky in "Periodic permutation p-groups and the unrestricted Burnsideproblem". These groups represent one of the earliest examples of Burnside groupsand, at the same time, show the potential of the class of groups generated by automatato contain groups with extraordinary properties. The original definition is translatedinto the language of automata. The original actions of Sushchansky groups on p-ary tree are not level-transitive and we describe their orbit trees. This allows usto simplify the definition and prove that these groups admit faithful level-transitiveactions on the same tree. Certain branch structures in their self-similar closuresare established. We provide the connection with so-called G groups introduced byBartholdi, Grigorchuk and Suninc in "Branch groups" that shows that all Sushchanskygroups have intermediate growth and allows us to obtain an upper bound on theirperiod growth functions.The second part is devoted to the opposite question of realization of knowngroups as groups generated by automata. We construct a family of automata with n states, n greater than or equal to 4, acting on a rooted binary tree and generating the free products ofcyclic groups of order 2.The iterated monodromy group IMG(z2+i) of the self-map of the complex plainz -> z2 + i is the central object of the third part of dissertation. This group actsfaithfully on the binary rooted tree and is generated by 4-state automaton. We providea self-similar measure for this group giving alternative proof of its amenability. Wealso compute an L-presentation for IMG(z2+i) and provide calculations related to thespectrum of the Markov operator on the Schreier graph of the action of IMG(z2 + i)on the orbit of a point on the boundary of the binary rooted tree.Finally, the last part is discussing the package AutomGrp for GAP system developedjointly by the author and Yevgen Muntyan. This is a very useful tool for studyingthe groups generated by automata from the computational point of view. Mainfunctionality and applications are provided.
机译:本文致力于自动机产生的群体的各个方面。从不同的角度研究特殊的阶级和这类团体的例子。它由四个主要部分组成。在第一部分中,我们研究1979年Sushchansky在“周期置换p-组和无限制的Burnside问题”中引入的Sushchansky p-组。这些组代表了Burnside组的最早例子之一,并且同时显示了由自动机生成的包含潜在性质的组的组类别的潜力。原始定义被翻译成自动机的语言。 Sushchansky群在p元树上的原始动作不是级别可传递的,我们将描述它们的轨道树。这使我们可以简化定义,并证明这些组在同一棵树上允许忠实的级别传递动作。在它们的自相似闭合中建立某些分支结构。我们提供了与由Bartholdi,Grigorchuk和Suninc在“分支组”中引入的所谓G组的联系,这表明所有Sushchansky组都具有中间增长,并允许我们获得其周期增长功能的上限。第二部分专门讨论相反的情况。实现已知组作为由自动机生成的组的问题。我们构造一个具有n个状态,n大于或等于4的自动机族,作用于有根的二叉树上,并生成2阶环组的自由积。自映射的迭代单峰组IMG(z2 + i)复数平面-> z2 + i的位置是论文第三部分的中心对象。该组忠实地作用于二叉根树,由四态自动机生成。我们为此小组提供了一种自相似的措施,以提供其适应性的替代证明。我们还计算了IMG(z2 + i)的L表示形式,并提供了与马尔可夫算子的频谱有关的计算,这些频谱在IMG(z2 + i)在二元根边界上的点的轨道上的作用的施莱尔图上最后,最后一部分是作者和Yevgen Muntyan共同开发的用于GAP系统的AutomGrp软件包。这是从计算角度研究自动机生成的组的非常有用的工具。提供了主要功能和应用程序。

著录项

  • 作者

    Savchuk Dmytro M.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号