This dissertation contains three essays. They are related to the exponential seriesestimation of copulas and the application of parametric copulas in financialeconometrics. Chapter II proposes a multivariate exponential series estimator (ESE) toestimate copula density nonparametrically. The ESE attains the optimal rate ofconvergence for nonparametric density. More importantly, it overcomes the boundarybias of copula estimation. Extensive Monte Carlo studies show the proposed estimatoroutperforms kernel and log-spline estimators in copula estimation. Discussion isprovided regarding application of the ESE copula to Asian stock returns during theAsian financial crisis. The ESE copula complements the existing nonparametric copulastudies by providing an alternative dedicated to the tail dependence measure.Chapter III proposes a likelihood ratio statistic using a nonparametric exponentialseries approach. The order of the series is selected by Bayesian Information Criterion(BIC). I propose three further modifications on my test statistic: 1) instead of puttingequal weight on the individual term of the exponential series, I consider geometric and exponential BIC average weights; 2) rather than using a nested sequence, I consider allsubsets to select the optimal terms in the exponential series; 3) I estimate the likelihoodratio statistic using the likelihood cross-validation. The extensive Monte Carlosimulations show that the proposed tests enjoy good finite sample performancescompared to the traditional methods such as the Anderson-Darling test. In addition, thisdata-driven method improves upon Neyman?s score test. I conclude that the exponentialseries likelihood ratio test can complement the Neyman?s score test.Chapter IV models and forecasts S&P500 index returns using the Copula-VARapproach. I compare the forecast performance of the Copula-VAR model with a classicalVAR model and a univariate time series model. I use this approach to forecast S&P500index returns. I apply a modified Diebold-Mariano test to test the equality of meansquared forecast errors and utilize a forecast encompassing test to evaluate forecasts. Thefindings suggest that allowing a more flexible specification in the error terms usingcopula tends improve the forecast accuracy. I also demonstrate combined forecastsimproved forecasts accuracy over individual models.
展开▼
机译:本文包含三篇论文。它们与关联数的指数级估计以及参数化关联在金融计量经济学中的应用有关。第二章提出了一种多元指数级估计器(ESE)来非参数地估计系数。对于非参数密度,ESE达到了最佳收敛速度。更重要的是,它克服了语系估计的边界偏差。大量的蒙特卡洛研究表明,提出的估计器在copula估计中优于内核估计和对数样条估计。提供了有关在亚洲金融危机期间将ESE copula应用于亚洲股票收益的讨论。 ESE copula通过提供一种专用于尾部相关性度量的方法来补充现有的非参数协处理器。第三章提出了使用非参数指数级数方法的似然比统计量。系列的顺序由贝叶斯信息标准(BIC)选择。我对我的测试统计量提出了三个进一步的修改:1)我没有考虑对指数系列的各个项施加相等的权重,而是考虑了几何和指数BIC平均权重; 2)我不使用嵌套序列,而是考虑所有子集来选择指数级数中的最优项; 3)我使用似然交叉验证估计似然比统计量。广泛的蒙特卡洛模拟表明,与诸如安德森-达林(Anderson-Darling)测试等传统方法相比,所提出的测试具有良好的有限样本性能。此外,这种以数据为依据的方法在Neyman评分测试的基础上进行了改进。我得出结论,指数序列似然比检验可以作为Neyman's得分检验的补充。第四章使用Copula-VAR方法对模型和S&P500指数收益进行预测。我将Copula-VAR模型的预测性能与classicVAR模型和单变量时间序列模型进行了比较。我使用这种方法来预测S&P500index的回报。我应用了改进的Diebold-Mariano检验来检验均值预测误差的相等性,并利用包含预测的检验来评估预测。结果表明,使用copula允许在误差项中使用更灵活的规范会提高预测的准确性。我还演示了组合预测可以提高各个模型的预测准确性。
展开▼