首页> 外文OA文献 >A Framework for Coupled Deformation-Diffusion Analysis with Application to Degradation/Healing
【2h】

A Framework for Coupled Deformation-Diffusion Analysis with Application to Degradation/Healing

机译:变形-扩散耦合分析框架在退化/修复中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis focuses on the formulation and numerical implementation of a fully coupled continuum model for deformation-diffusion in linearized elastic solids. Themathematical model takes into account the affect of the deformation on the diffusion process, and the effect of the transport of an inert chemical species on the deformation of the solid. A robust computational framework is presented for solving the proposed mathematical model, which consists of coupled non-linear partial differential equations. It should be noted that many popular numerical formulations may produce unphysical negative values for the concentration, particularly, when the diffusion process is anisotropic. The violation of the non-negative constraint by these numerical formulations is not mere numerical noise. In the proposed computational framework we employ a novel numerical formulation that will ensure that the concentration of the diffusant be always non-negative, which is one of the main contributions of this thesis. Representative numerical examples are presented to show the robustness, convergence, and performance of the proposed computational framework. Another contribution is to systematically study the affect of transport of the diffusant on the deformation of the solid and vice-versa, and their implication in modeling degradation/healing of materials. It is shown that the coupled response is both qualitatively and quantitatively different from the uncoupled response.
机译:本文主要研究线性弹性固体中变形-扩散的完全耦合连续模型的建立和数值实现。数学模型考虑了变形对扩散过程的影响,以及惰性化学物质的传输对固体变形的影响。提出了一个强大的计算框架来解决所提出的数学模型,该模型由耦合的非线性偏微分方程组成。应当指出,许多流行的数值公式可能会产生浓度的非物理负值,特别是在扩散过程是各向异性的情况下。这些数值公式对非负约束的违反不仅是数值噪声。在提出的计算框架中,我们采用了新颖的数值公式,可确保扩散剂的浓度始终为非负值,这是本论文的主要贡献之一。给出了代表性的数值示例,以显示所提出的计算框架的鲁棒性,收敛性和性能。另一个贡献是系统地研究了扩散剂的运输对固体变形的影响,反之亦然,以及它们在建模材料降解/修复中的意义。结果表明,耦合响应在质量和数量上均与非耦合响应不同。

著录项

  • 作者

    Mudunuru Maruti Kumar;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号