首页> 外文OA文献 >Factors determining the pKa values of the ionizable groups in proteins: their intrinsic pKas and the effects of hydrogen bonding on buried carboxyl groups
【2h】

Factors determining the pKa values of the ionizable groups in proteins: their intrinsic pKas and the effects of hydrogen bonding on buried carboxyl groups

机译:决定蛋白质中可电离基团pKa值的因素:它们的固有pKas以及氢键对掩埋羧基的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A goal of the modern protein chemist is the design of novel proteins with specificactivities or functions. One hurdle to overcome is the ability to accurately predict thepKas of ionizable groups upon their burial in the interior of a protein, where they aretypically perturbed from their intrinsic pKas. Most discussion of intrinsic pKas is basedon model compound data collected prior to the 1960's. We present here a new set ofintrinsic pKas based on model peptides, which we think are more applicable than themodel compound values. We observe some differences with the model compoundvalues, and discuss these by critically examining the compounds originally used for thedataset. One interaction affecting the pKas of ionizable groups in proteins that is notwell understood is the effect of hydrogen bonds. The side chain carboxyl of Asp33 inRNase Sa is buried, forms 3 intramolecular hydrogen bonds, and has a pKa of 2.4 in thefolded protein. One of these hydrogen bonds is to the side chain hydroxyl of Thr56. Wemutated Thr56 to alanine and valine and observed that the mutations relieves theperturbation on the carboxyl group and elevates its pKa by 1.5 and 2 units, respectively.The side chain carboxyl of Asp76 in RNase T1 is completely buried, forms 3intramolecular hydrogen bonds to other side chain groups, and has a pKa of 0.5 in the folded protein. Mutating any of the hydrogen bonding groups to the carboxyl affects itspKa differently, depending on the group mutated. Mutating all of the hydrogen bondinggroups, creating a triple mutant of RNase T1, reverses the perturbation on the pKa andelevates it to about 6.4, very near the observed pKa of other carboxyl groups buried inhydrophobic environments. We compared these experimental results with predictedresults from theoretical models based on the Solvent Accessibility Corrected Tanford-Kirkwood Equation and the finite difference solution to the linearized Poisson-Boltzmann Equation. The comparisons revealed that these models, most often used bytheoreticians, are flawed when typically applied, and some possible improvements areproposed.
机译:现代蛋白质化学家的目标是设计具有特定活性或功能的新型蛋白质。要克服的一个障碍是准确预测可离子化基团在埋入蛋白质内部时的pKas的能力,在这些情况下它们通常会受到其固有pKas的干扰。关于固有pKas的大多数讨论都是基于1960年代之前收集的模型化合物数据。我们在此介绍了一组基于模型肽的新的内在pKas,我们认为它们比模型化合物值更适用。我们观察到模型复合值的一些差异,并通过严格检查最初用于数据集的化合物来讨论这些差异。尚不了解的一种影响蛋白质中可电离基团pKas的相互作用是氢键的作用。 Asp33 inRNase Sa中的侧链羧基被掩埋,形成3个分子内氢键,并且在折叠的蛋白质中的pKa为2.4。这些氢键之一是Thr56的侧链羟基。将Thr56突变为丙氨酸和缬氨酸,观察到该突变减轻了羧基的扰动,并将其pKa分别提高了1.5和2个单位.RNase T1中Asp76的侧链羧基完全被掩埋,与另一侧链形成3个分子内氢键组,并且折叠后的蛋白质的pKa为0.5。取决于键基的突变,使任何氢键基团突变至羧基会不同地影响其pKa。突变所有氢键基团,产生RNase T1的三重突变体,可逆转pKa上的扰动并将其升高至约6.4,非常接近在疏水环境中掩埋的其他羧基的pKa。我们将这些实验结果与基于溶剂可及性校正的Tanford-Kirkwood方程的理论模型以及线性化Poisson-Boltzmann方程的有限差分解的理论结果进行了比较。比较表明,这些模型是理论家最常使用的模型,通常应用时存在缺陷,并提出了一些可能的改进方法。

著录项

  • 作者

    Thurlkill Richard Lee;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号