首页> 外文OA文献 >Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network
【2h】

Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network

机译:基于动态RBF神经网络的热电锅炉短期负荷预测研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As thermal inertia is the key factor for the lag of thermoelectric utility regulation, it becomes very important to forecast its short-term load according to running parameters. In this paper, dynamic radial basis function (RBF) neural network is proposed based on the RBF neural network with the associated parameters of sample deviation and partial sample deviation, which are defined for the purpose of effective judgment of new samples. Also, in order to forecast the load of sample with large deviation, sensitivity coefficients of input layer is given in this paper. To validate this model, an experiment is performed on a thermoelectric plant, and the experimental result indicates that the network can be put into extensive use for short-term load forecasting of thermoelectric utility.
机译:由于热惯性是热电公用事业调节滞后的关键因素,因此根据运行参数预测其短期负荷变得非常重要。本文在RBF神经网络的基础上,提出了带有样本偏差和部分样本偏差相关参数的动态径向基函数(RBF)神经网络,其目的是为了有效判断新样本。另外,为了预测较大偏差的样本量,给出了输入层的灵敏度系数。为了验证该模型,在热电厂进行了实验,实验结果表明该网络可广泛用于热电设施的短期负荷预测。

著录项

  • 作者

    Dai W.; Zou P.; Yan C.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号